16 research outputs found

    Regulation of cellular aging in rat embryonic fibroblast cells using gallic acid

    Get PDF
    Introduction: Aging is a process characterized by an irreversible growth arrest in somatic cells which caused reactive oxygen species (ROS) products, lipid peroxidation, and DNA and proteins damage. The specific objective of this study was to assess a well-known natural antioxidant compound, Gallic acid (GA) for its anti-aging potential, and evaluate the mechanisms involved in attenuating H2O2 induced cellular senescence in rat embryonic fibroblast (REF) cells. Methods and Results: To begin this process, REF cells were pre-incubated with GA for 24 hours, subsequently were exposed to hydrogen peroxide (H2O2) for 2 hours. After the incubation time, cell viability, ROS level as well as senescence-associated (beta)-galactosidase (SA-β-GAL) activity, mitochondrial complex I, II and IV enzyme activities, and cell cycle distribution via flow cytometry were investigated. GA declined the cytotoxic effects of H2O2 in REF cells. Analysis of cell cycle showed in REF cells treated by GA the percentage of G0/G1 arrest was diminished compared to the H2O2 group. Additionally, GA potently decreased the levels of ROS as well as mitochondrial complex activities. Furthermore, qualitative and quantitative investigation of SA-β-GAL activity demonstrated GA can also decrease cellular senescence. Conclusions: The findings of this study offer some important insights into the protective effect of GA on controlling cellular senescence and aging process. The results presented support to these hypotheses that GA diminish the oxidative stress of REF cells in cellular senescence. Moreover, incorporation of GA as a protective antioxidant agent works by attenuating the ROS, subsiding mitochondrial complex activities, and affecting cell division

    Chitosan/Agarose/Graphene oxide nanohydrogel as drug delivery system of 5-fluorouacil in breast cancer therapy

    Get PDF
    Breast cancer refers to a very common deadly class of malignant tumors, especially in women worldwide. In the present study, a promising methodology has been developed to simultaneously improve the drug loading per-formance and achieve a sustained release of 5-fluorouracil (5-FU) as a model drug for breast cancer. For this purpose, a pH-sensitive and biocompatible hydrogel of chitosan/agarose/graphene oxide (CS/AG/GO) was first synthesized with glyoxal as cross-linker. 5-FU-loaded nanocomposites (NCs) of CS/AG/GO were then prepared via water-in-oil-in-water (W/O/W) emulsification technique. XRD and FTIR analyses confirmed the successful synthesis of the nanocarriers and gave insight on their crystalline structure and molecular interactions between the components. DLS demonstrated that the nanocarriers comprise nanoparticles with an average size of 197 nm and a PDI of 0.34. SEM revealed their spherical morphology and zeta potential measurements indicated an average surface charge of +23.5 mV. The drug loading and entrapment efficiencies (57% and 92%, respectively) were significantly higher than those reported previously for other nanocarriers. A very effective and sustained drug release profile was observed at pH 5.4; in 48 h, almost the entire 5-FU content was released. Moreover, effective cytotoxicity against breast cancer cell (BCC) lines (MCF-7) was observed: the cell viability upon in-cubation with CS/AG/GO/5-FU was about 23%, demonstrating its anti-cancer capability. Therefore, the syn-thesized NCs can potentially act as pH-sensitive nanovehicles for programmed release of 5-FU in breast cancer treatment.Comunidad de Madri

    Chitosan/Gamma-Alumina/Fe3O4@5-FU nanostructures as promising nanocarriers: physiochemical characterization and toxicity activity

    Get PDF
    Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (gamma Al)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments

    Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes

    No full text
    The naturally antioxidant and coenzyme, alphalipoic acid (alpha-LA), has gained considerable attention regarding different functions and therapeutically effective in treating oxidative stress-associated diseases in the human body. This study was designed to examine the protective effect of alpha-LA against H2O2-induced oxidative stress and apoptosis in human lymphoid cells. Human peripheral blood lymphocytes were preincubated with alpha-LA and then exposed to H2O2. After that, the viability of the cells, rate of apoptosis, oxidative stress biomarkers such as reactive oxygen species (ROS) and level of lipid peroxidation (LPO), and also tumor necrosis factor-alpha (TNF-alpha) were studied. Pretreatment of lymphocytes with alpha-LA, dramatically enhanced viability of the cells and decreased apoptosis. Investigation of caspases gives a clear picture of the mechanism by which alpha-LA decreases ROS and causes a reduction in apoptosis through caspase-9-dependent mitochondrial pathway. Furthermore, alpha-LA dose dependently decreased oxidative stress by a reduction in level of LPO, and the dose of 1000 mu M indicates a significant decrease (p < 0.01) in TNF-alpha level. Collectively, the present data show that alpha-LA is an ideal compound which has profound protective effects on oxidation, inflammation, and apoptosis. As a result, alpha-LA may indicate a new way toward the development of antioxidant therapy

    On the benefit of co-transplantation of adipose tissue-derived mesenchymal stem cells on the survival and function of islet grafts in diabetic rats.

    No full text
    Introduction: Allogeneic islet transplantation serves as an ideal source for insulin-secreting beta cells, maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of the islet graft failure and the need for life-long nonspecific immunosuppressive therapy have been a major obstacles in the widespread adoption of this therapeutic option. In this study, we attempted to determine whether the inclusion of mesenchymal stem cells (MSCs) with islet transplantation could &nbsp;improve the survival and function of the islet graft. &nbsp;Methods and Results: Islets were transplanted, either alone or with in vitro-expanded adipose tissue-derived MSCs, into omental pouch in a rat model of streptozotocin (STZ)-induced diabetes. After transplantation, non-fasting blood glucose level was monitored every 5 days using samples obtained from the tail vein. Normoglycemia was defined as two consecutive blood glucose determinations of less than 250 mg/dl. In addition, the grafted animals were monitored every 5 days for the changes in their body weight. The transplantation of islets into the omentum of STZ-induced diabetic rats decreased blood glucose levels in a time-dependent manner, established normoglycemia after 20 days and sustained euglycemia until the last day of the 75-day study period. Interestingly, co-transplantation of islets with MSCs, with half of the required number of islets for successful islet transplantation alone, resulted in an improvement of islet allograft outcome similar to that of sole islet transplantation. Conclusions: Our results indicated that co-transplantation of adipose tissue-derived MSCs with islet graft promoted survival and function of the graft and reduced the islet mass required for reversal of diabetes. This innovative protocol may allow “one donor to one recipient” islet transplantation

    Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes

    No full text
    Background: Chlorpyrifos (CP) is one of the most widely used organophosphate (OP) insecticides in agricultural and residential pest control with its attendant adverse health effect. In the present study, it is proposed to investigate the possible modulatory role of magnesium oxide nanoparticles (MgO NPs) against CP-induced toxicity in human lymphocytes and determine the mechanisms lying behind this protection by viability and biochemical assays. Materials and Methods: Isolated lymphocytes were exposed to 12 μg/mL CP either alone or in combination with different concentrations of MgO NPs (0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL). After a 3-day incubation, the viability and oxidative stress markers including cellular mitochondrial activity, caspase-3 and -9 activities, total antioxidant power, lipid peroxidation, and myeloperoxidase (MPO) activity were measured. Also, the levels of tumor necrosis factor-α (TNF-α) as inflammatory index, along with acetylcholinesterase (AChE) activity were measured. Statistical differences were determined using one-way analysis of variance (ANOVA) and Dunnett′s multiple comparison tests. Results: It is indicated that CP-exposed lymphocytes treated with MgO NPs resulted in a substantial reduction in the pace of mortality as well as the stages of oxidative stress in a dose-dependent manner. Also, MgO NPs (100 μg/mL) meaningfully restored CP-induced increase of TNF-α (P < 0.001) and decrease of AChE activity (P < 0.001) and were capable of preventing CP-treated human lymphocytes from apoptosis (P < 0.001). Conclusion: Our results demonstrate that MgO NPs in approximate 100 nm diameter not only make cells resistant to the toxic properties of CP but also attenuate toxic effects of CP, which is demonstrating the potential of MgO NPs to be applied in future immune deficiency therapeutic strategies

    Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion

    No full text
    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800 mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. (C) 2015 Elsevier B.V. All rights reserved

    Molecular Evidence on the Inhibitory Potential of Metformin against Chlorpyrifos-Induced Neurotoxicity

    No full text
    Chlorpyrifos (CPF) is an organophosphorus (OP) pesticide, resulting in various health complications as the result of ingestion, inhalation, or skin absorption, and leads to DNA damage and increased oxidative stress. Metformin, derived from Galega officinalis, is reported to have anti-inflammatory and anti-apoptotic properties; thus, this study aimed to investigate the beneficial role of metformin in neurotoxicity induced by sub-acute exposure to CPF in Wistar rats. In this study, animals were divided into nine groups and were treated with different combinations of metformin and CPF. Following the 28 days of CPF and metformin administration, brain tissues were separated. The levels of inflammatory biomarkers such as tumor necrosis factor alpha (TNFα) and interleukin 1β (IL-1β), as well as the expression of 5HT1 and 5HT2 genes, were analyzed. Moreover, the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and the ADP/ATP ratio, in addition to the activity of acetylcholinesterase (AChE) and superoxide dismutase (SOD), were tested through in vitro experiments. This study demonstrated the potential role of metformin in alleviating the mentioned biomarkers, which can be altered negatively as a result of CPF toxicity. Moreover, metformin showed protective potential in modulating inflammation, as well as oxidative stress, the expression of genes, and histological analysis, in a concentration-dependent manner
    corecore