57 research outputs found

    Unexpected Long-Term Variability in Jupiter's Tropospheric Temperatures

    Full text link
    An essential component of planetary climatology is knowledge of the tropospheric temperature field and its variability. Previous studies of Jupiter hinted at periodic behavior that was non-seasonal, as well as dynamical relationships between tropospheric and stratospheric temperatures. However, these observations were made over time frames shorter than Jupiter's orbit or they used sparse sampling. We derived upper-tropospheric (300-mbar) temperatures over 40 years, extending those studies to cover several orbits of Jupiter, revealing unexpected results. Periodicities of 4, 7 8-9 and 10-14 years were discovered that involved different latitude bands and seem disconnected from seasonal changes in solar heating. Anti-correlations of variability in opposite hemispheres were particularly striking at 16, 22 and 30 degrees from the equator. Equatorial temperature variations are also anticorrelated with those 60-70 km above. Such behavior suggests a top-down control of equatorial tropospheric temperatures from stratospheric dynamics. Realistic future global climate models must address the origins of these variations in preparation for their extension to a wider array of gas-giant exoplanets.Comment: Primary file: 16 pages, 5 figures. Supplemental File (attached): 12 pages, 3 figures, 1 tabl

    First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMĂą Juno Images

    Get PDF
    We present wind speeds at the ~ 1 bar level at both Jovian polar regions inferred from the 5Ăą ĂŽÂŒm infrared images acquired by the Jupiter InfraRed Auroral Mapper (JIRAM) instrument on the National Aeronautics and Space Administration Juno spacecraft during its fourth periapsis (2 February 2017). We adopted the criterion of minimum mean absolute distortion (Gonzalez & Woods, 2008) to quantify the motion of cloud features between pairs of images. The associated random error on speed estimates is 12 m/s in the northern polar region and 9.8 m/s at the south. Assuming that polar cyclones described by Adriani et al. (2018, https://doi.org/10.1038/nature25491) are in rigid motion with respect to System III, tangential speeds in the interior of the vortices increase linearly with distance from the center. The annulus of maximum speed for the main circumpolar cyclones is located at approximatively 1,000 km from their centers, with peak cyclonic speeds typically between 80 and 110 m/s and ~50 m/s in at least two cases. Beyond the annulus of maximum speed, tangential speed decreases inversely with the distance from the center within the Southern Polar Cyclone and somewhat faster within the Northern Polar Cyclone. A few small areas of anticyclonic motions are also identified within both polar regions.Key PointsMain vortices on the Jupiter polar regions are cyclones, with peak wind speeds up to 110 m/sMaximum speeds are observed about 1,000 km from the centers of the vorticesSmaller and weaker anticyclonic areas are also identifiedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/1/jgre20953.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/2/jgre20953_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/3/jgre20953-sup-0001-2018JE005555-SI.pd

    Multiple-wavelength sensing of Jupiter during the Juno mission's first perijove passage

    Get PDF
    We compare Jupiter observations made around 27 August 2016 by Juno's JunoCam, Jovian Infrared Auroral Mapper (JIRAM), MicroWave Radiometer (MWR) instruments, and NASA's Infrared Telescope Facility. Visibly dark regions are highly correlated with bright areas at 5 ”m, a wavelength sensitive to gaseous NH3 gas and particulate opacity at p ≀5 bars. A general correlation between 5-”m and microwave radiances arises from a similar dependence on NH3 opacity. Significant exceptions are present and probably arise from additional particulate opacity at 5 ”m. JIRAM spectroscopy and the MWR derive consistent 5-bar NH3 abundances that are within the lower bounds of Galileo measurement uncertainties. Vigorous upward vertical transport near the equator is likely responsible for high NH3 abundances and with enhanced abundances of some disequilibrium species used as indirect indicators of vertical motions

    Genetic Testing for Early Detection of Individuals at Risk of Coronary Heart Disease and Monitoring Response to Therapy: Challenges and Promises

    Get PDF
    Coronary heart disease (CHD) often presents suddenly with little warning. Traditional risk factors are inadequate to identify the asymptomatic high-risk individuals. Early identification of patients with subclinical coronary artery disease using noninvasive imaging modalities would allow the early adoption of aggressive preventative interventions. Currently, it is impractical to screen the entire population with noninvasive coronary imaging tools. The use of relatively simple and inexpensive genetic markers of increased CHD risk can identify a population subgroup in which benefit of atherosclerotic imaging modalities would be increased despite nominal cost and radiation exposure. Additionally, genetic markers are fixed and need only be measured once in a patient’s lifetime, can help guide therapy selection, and may be of utility in family counseling

    Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus

    Get PDF
    Saturn’s main ring system is associated with a set of small moons that are either embedded within it, or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the Ring-grazing Orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. The optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system, and by accretion of bright icy particles or water vapor from volcanic plumes originating on the planet’s moon Enceladus

    The Search for Hydrogen Peroxide on Enceladus

    Get PDF
    Using observations from the VIMS aboard the spacecraft Cassini, we have searched for the presence of H2O2 on Enceladus. Our results suggest a tentative detection of H2O2 in a condensed form, using the 3.5 ÎŒm combination mode band as an indicator

    Water ice crystallinity and grain sizes on Dione

    No full text
    Saturn’s satellite Dione is becoming an increasingly important object in the outer Solar System, as evidence for its current activity accumulates. Infrared observations of the surface can provide clues to the history of the body and currently active processes. Using data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS), we perform three sets of analyses that are sensitive to the ice state, temperature, thermal history, grain size and composition of surface ice. These are calculation of a “crystallinity factor”, spectral ratios and water ice band depths. In our analysis, we focus on the dichotomy between the wispy and dark terrain on Dione’s trailing hemisphere, to better understand the source of the different materials and their current properties. Our results suggest two different scenarios: (1) the ice from the wispy region has a higher crystallinity and water ice content than the dark region or (2) the wispy region contains larger grains. Both of these models imply recent geologic activity on Dione
    • 

    corecore