40 research outputs found

    Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet

    Get PDF
    Background. Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process. Results. The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon. Conclusion. We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabete

    Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant (pind) in eggplant (Solanum melongena L.)

    Get PDF
    Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype ‘14-345’. The bagged pind fruits were light purple, whereas those of ‘14-345’ were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in ‘14-345’. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant

    NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit

    Full text link
    Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed “smoky.” Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. Using a combinatorial omics approach, we identified the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes

    Identification of the Gene Encoding the α1,3-Mannosyltransferase (ALG3) in Arabidopsis and Characterization of Downstream N-Glycan Processing[W]

    No full text
    Glycosyltransferases are involved in the biosynthesis of lipid-linked N-glycans. Here, we identify and characterize a mannosyltransferase gene from Arabidopsis thaliana, which is the functional homolog of the ALG3 (Dol-P-Man:Man5GlcNAc2-PP-Dol α1,3-mannosyl transferase) gene in yeast. The At ALG3 protein can complement a Δalg3 yeast mutant and is localized to the endoplasmic reticulum in yeast and in plants. A homozygous T-DNA insertion mutant, alg3-2, was identified in Arabidopsis with residual levels of wild-type ALG3, derived from incidental splicing of the 11th intron carrying the T-DNAs. N-glycan analysis of alg3-2 and alg3-2 in the complex-glycan-less mutant background, which lacks N-acetylglucosaminyl-transferase I activity, reveals that when ALG3 activity is strongly reduced, almost all N-glycans transferred to proteins are aberrant, indicating that the Arabidopsis oligosaccharide transferase complex is remarkably substrate tolerant. In alg3-2 plants, the aberrant glycans on glycoproteins are recognized by endogenous mannosidase I and N-acetylglucosaminyltransferase I and efficiently processed into complex-type glycans. Although no high-mannose-type glycoproteins are detected in alg3-2 plants, these plants do not show a growth phenotype under normal growth conditions. However, the glycosylation abnormalities result in activation of marker genes diagnostic of the unfolded protein response

    Lack of Detrimental Effects of Bacillus thuringiensis Cry Toxins on the Insect Predator Chrysoperla carnea: a Toxicological, Histopathological, and Biochemical Analysis

    Get PDF
    The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific binding of the Cry1A proteins should be found if the proteins were toxic to the green lacewing. In control experiments, Cry1Ac was detected bound to the midgut epithelium of intoxicated H. armigera larvae, and cell damage was observed. However, no binding or histopathological effects of the toxin were found in tissue sections of lacewing larvae. Similarly, Cry1Ab or Cry1Ac bound in a specific manner to brush border membrane vesicles from Spodoptera exigua but not to similar fractions from green lacewing larvae. The in vivo and in vitro binding results strongly suggest that the lacewing larval midgut lacks specific receptors for Cry1Ab or Cry1Ac. These results agree with those obtained in bioassays, and we concluded that the Cry toxins tested, even at concentrations higher than those expected in real-life situations, do not have a detrimental effect on the green lacewing when they are ingested either directly or through the prey

    Effect of Climate Conditions and Plant Developmental Stage on the Stability of Antibodies Expressed in Transgenic Tobacco

    No full text
    Plants are regarded as a promising system for the production of heterologous proteins. However, little is known about the influence of plant physiology and plant development on the yield and quality of the heterologous proteins produced in plants. To investigate this, tobacco (Nicotiana tabacum cv Samsun NN) was transformed with a single construct that contained behind constitutive promotors the light- and heavy-chain genes of a mouse antibody. The in planta stability of the antibody was analyzed in transgenic plants that were grown under high and low irradiation at 15°C and 25°C. High-light conditions favored the production of biomass, of total soluble protein, and of antibody. The plants grown at 25°C developed faster and contained less antibody per amount of leaf tissue than the plants grown at 15°C. Both endogenous protein and antibody content showed a strong decline during leaf development. The heavy chains of the antibody underwent in planta degradation via relatively stable fragments. In vitro incubations of purified plantibody with leaf extracts of wild-type tobacco indicated the involvement of acidic proteases. It is interesting that the same antibody produced by mouse hybridoma cells exhibited higher stability in this in vitro assay. This may be explained by the assumption that the plant type of N-glycosylation contributes less to the stability of the antibody than the mouse-type of N-glycosylation. The results of this study indicate that proteolytic degradation during plant development can be an important factor affecting yield and homogeneity of heterologous protein produced by transgenic plants

    Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color1[W][OA]

    No full text
    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum ‘Moneyberg’ and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit and suggest strongly that SlMYB12 is a likely candidate for the y mutation

    Cytolytic virus activation therapy and treatment monitoring for Epstein-Barr virus associated nasopharyngeal carcinoma in a mouse tumor model

    No full text
    Undifferentiated nasopharyngeal carcinoma (NPC) is 100% associated with Epstein-Barr virus (EBV). Expression of viral proteins in the tumor cells is highly restricted. EBV reactivation by CytoLytic Virus Activation (CLVA) therapy triggers de novo expression of early viral kinases (PK and TK) and uses antiviral treatment to kill activated cells. The mechanism of tumor elimination by CLVA was analyzed in NPC mouse model using C666.1 cells. Valproic acid (VPA) was combined with gemcitabine (GCb) to stimulate EBV reactivation, followed by antiviral treatment with ganciclovir (GCV). A single cycle of CLVA treatment resulted in specific tumor cell killing as indicated by reduced tumor volume, loss of EBV-positive cells in situ, and paralleled by decreased EBV DNA levels in circulation, which was more pronounced than treatment with GCb alone. In vivo reactivation was confirmed by presence of lytic gene transcripts and proteins in tumors 6 days after GCb/VPA treatment. Virus reactivation was visualized by [124I]-FIAU accumulation in tumors using PET-scan. This studied showed that CLVA therapy is a potent EBV-specific targeting approach for killing tumor cells. The [124I]-FIAU appears valuable as PET tracer for studies on CLVA drug dosage and kinetics in vivo, and may find clinical application in treatment monitoring
    corecore