30 research outputs found

    Accretion Disks Around Black Holes: Twenty Five Years Later

    Get PDF
    We study the progress of the theory of accretion disks around black holes in last twenty five years and explain why advective disks are the best bet in explaining varied stationary and non-stationary observations from black hole candidates. We show also that the recently proposed advection dominated flows are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included. Appearing in `Observational Evidence for Black Holes in the Universe', ed. Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland

    Two conserved cysteine triads in human Ero1alpha cooperate for efficient disulfide bond formation in the endoplasmic reticulum

    No full text
    Human Ero1alpha is an endoplasmic reticulum (ER)-resident protein responsible for protein disulfide isomerase (PDI) oxidation. To clarify the molecular mechanisms underlying its function, we generated a panel of cysteine replacement mutants and analyzed their capability of: 1) complementing a temperature-sensitive yeast Ero1 mutant, 2) favoring oxidative folding in mammalian cells, 3) forming mixed disulfides with PDI and ERp44, and 4) adopting characteristic redox-dependent conformations. Our results reveal that two essential cysteine triads (Cys85-Cys94-Cys99 and Cys391-Cys394-Cys397) cooperate in electron transfer, with Cys94 likely forming mixed disulfides with PDI. Dominant negative phenotypes arise when critical residues within the triads are mutated (Cys394, Cys397, and to a lesser extent Cys99). Replacing the first cysteine in either triad (Cys85 or Cys391) generates mutants with weaker activity. In addition, mutating either Cys85 or Cys391, but not Cys397, reverts the dominant negative phenotype of the C394A mutant. These findings suggest that interactions between the two triads, dependent on Cys85 and Cys391, are important for Ero1alpha function, possibly stabilizing a platform for efficient PDI oxidation

    Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population

    No full text
    Children are prone to bloodstream infections (BSIs), the rapid and accurate diagnosis of which is an unmet clinical need. The T2MR technology is a direct molecular assay for identification of BSI pathogens, which can help to overcome the limits of blood culture (BC) such as diagnostic accuracy, blood volumes required, and turnaround time. We analyzed results obtained with the T2Bacteria (648) and T2Candida (106) panels in pediatric patients of the Bambino Gesu Children's Hospital between May 2018 and September 2020 in order to evaluate the performance of the T2Dx instrument with respect to BC. T2Bacteria and T2Candida panels showed 84.2% and 100% sensitivity with 85.9% and 94.1% specificity, respectively. The sensitivity and specificity of the T2Bacteria panel increased to 94.9% and 98.7%, respectively, when BC was negative but other laboratory data supported the molecular result. T2Bacteria sensitivity was 100% with blood volumes <2 mL in neonates and infants. T2Bacteria and T2Candida provided definitive microorganism identification in a mean time of 4.4 and 3.7 h, respectively, versus 65.7 and 125.5 h for BCs (P < 0.001). T2 panels rapidly and accurately enable a diagnosis of a pediatric BSI, even in children under 1 year of age and for very small blood volumes. These findings support their clinical use in life-threatening pediatric infections, where the time to diagnosis is of utmost importance, in order to improve survival and minimize the long-term sequalae of sepsis. The T2 technology could be further developed to include more bacteria and fungi species that are involved in the etiology of sepsis

    A novel disulphide switch mechanism in Ero1α balances ER oxidation in human cells

    No full text
    Oxidative maturation of secretory and membrane proteins in the endoplasmic reticulum (ER) is powered by Ero1 oxidases. To prevent cellular hyperoxidation, Ero1 activity can be regulated by intramolecular disulphide switches. Here, we determine the redox-driven shutdown mechanism of Ero1α, the housekeeping Ero1 enzyme in human cells. We show that functional silencing of Ero1α in cells arises from the formation of a disulphide bond—identified by mass spectrometry—between the active-site Cys94 (connected to Cys99 in the active enzyme) and Cys131. Competition between substrate thiols and Cys131 creates a feedback loop where activation of Ero1α is linked to the availability of its substrate, reduced protein disulphide isomerase (PDI). Overexpression of Ero1α-Cys131Ala or the isoform Ero1β, which does not have an equivalent disulphide switch, leads to augmented ER oxidation. These data reveal a novel regulatory feedback system where PDI emerges as a central regulator of ER redox homoeostasis

    Genotype–phenotype relationship in three cases with overlapping 19p13.12 microdeletions

    No full text
    We describe the detailed clinical and molecular characterization of three patients (aged 7, 84/12 and 31 years) with overlapping microdeletions in 19p13.12, extending to 19p13.13 in two cases. The patients share the following clinical features with a recently reported 10-year-old girl with a 19p13.12 microdeletion: mental retardation (MR), psychomotor and language delay, hearing impairment, brachycephaly, anteverted nares and ear malformations. All patients share a 359-kb deleted region in 19p13.12 harboring six genes (LPHN1, DDX39, CD97, PKN1, PTGER1 and GIPC1), several of which may be MR candidates because of their function and expression pattern. LPHN1 and PKN1 are the most appealing; LPHN1 for its interaction with Shank family proteins, and PKN1 because it is involved in a variety of functions in neurons, including cytoskeletal organization. Haploinsufficiency of GIPC1 may contribute to hearing impairment for its interaction with myosin VI. A behavioral phenotype was observed in all three patients; it was characterized by overactive disorder associated with MR and stereotyped movements (ICD10) in one patient and hyperactivity in the other two. As Ptger1-null mice show behavioral inhibition and impulsive aggression with defective social interaction, PTGER1 haploinsufficiency may be responsible for the behavioral traits observed in these patients
    corecore