9,497 research outputs found

    Flavor ordering of elliptic flows at high transverse momentum

    Get PDF
    Based on the quark coalescence model for the parton-to-hadron phase transition in ultra-relativistic heavy ion collisions, we relate the elliptic flow (v2v_2) of high \pt hadrons to that of high \pt quarks. For high \pt hadrons produced from an isospin symmetric and quark-antiquark symmetric partonic matter, magnitudes of their elliptic flows follow a flavor ordering as (v2,π=v2,N)>(v2,Λ=v2,Σ)>v2,K>v2,Ξ>(v2,ϕ=v2,Ω)(v_{2,\pi}=v_{2,N}) > (v_{2,\Lambda}=v_{2,\Sigma}) > v_{2,K} > v_{2,\Xi} > (v_{2,\phi}=v_{2,\Omega}) if strange quarks have a smaller elliptic flow than light quarks. The elliptic flows of high \pt hadrons further follow a simple quark counting rule if strange quarks and light quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture

    The applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    Full text link
    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart dissipative hydrodynamics (IS) and Navier-Stokes theory (NS) for relativistic heavy ion physics applications. A massless ideal gas with 2->2 interactions is considered in a 0+1D Bjorken scenario, appropriate for the early longitudinal expansion stage of the collision. In the scale invariant case of a constant shear viscosity to entropy density ratio eta/s ~ const, we find that Israel-Stewart theory is 10% accurate in calculating dissipative effects if initially the expansion timescale exceeds half the transport mean free path tau0/lambda0 > ~2. The same accuracy with Navier-Stokes requires three times larger tau0/lambda0 > ~6. For dynamics driven by a constant cross section, on the other hand, about 50% larger tau0/lambda0 > ~3 (IS) and ~9 (NS) are needed. For typical applications at RHIC energies s_{NN}**(1/2) ~ 100-200 GeV, these limits imply that even the Israel-Stewart approach becomes marginal when eta/s > ~0.15. In addition, we find that the 'naive' approximation to Israel-Stewart theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic Israel-Stewart and Navier-Stokes solutions in 0+1D, and present further tests for numerical dissipative hydrodynamics codes in 1+1, 2+1, and 3+1D based on generalized conservation laws.Comment: 30 pages, 26 EPS figures, revtex stylefil

    Rethinking the QCD collisional energy loss

    Get PDF
    It is shown that to leading order the collisional energy loss of an energetic parton in the hot quark gluon plasma reads dE/dxα(mD2)T2dE/dx \sim \alpha(m_D^2)T^2, where the scale of the coupling is determined by the (parametrically soft) Debye screening mass. Compared to previous expressions derived by Bjorken and other authors, dEB/dxα2T2ln(ET/mD2)dE^B/dx \sim \alpha^2 T^2 \ln(ET/m_D^2), the rectified result takes into account the running of the coupling, as dictated by quantum corrections beyond tree level. As one significant consequence, due to asymptotic freedom, the QCD collisional energy loss becomes independent of the jet energy in the limit ETE \gg T. It is advocated that this resummation improved perturbative result might be useful to (re-)estimate the collisional energy loss for temperatures relevant in heavy ion phenomenology.Comment: contribution to "Hot Quarks 2006", Villasimius, Italy, 15-20 May 200

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm2^{-2} to 3.0×1012\times10^{12} cm2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Afterpulsing and instability in superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that SNAPs can provide a speed-up relative to superconducting nanowire single-photon detectors with the same area but with some limitations: (1) Reducing the series inductance of SNAPs (necessary for the avalanche formation) could result in the detectors operating in an unstable regime, (2) a trade-off exists between maximizing the bias current margin and minimizing the reset time of SNAPs, and (3) reducing the reset time of SNAPs below ∼1 ns resulted in afterpulsing.United States. Intelligence Advanced Research Projects ActivityUnited States. Air Force (Air Force Contract No. FA8721-05-C-0002)United States. Dept. of Energy. Center for Excitonics (Award No. DE-SC0001088

    Heavy Flavor Probes of Quark Matter

    Full text link
    A brief survey of the role of heavy flavors as a probe of the state of matter produced by high energy heavy ion collisions is presented. Specific examples include energy loss, initial state gluon saturation, thermalization and flow. The formation of quarkonium bound states from interactions in which multiple heavy quark-antiquark pairs are initially produced is examined in general. Results from statistical hadronization and kinetic models are summarized. New predictions from the kinetic model for J/Psi at RHIC are presented.Comment: Based on invited plenary talk at Strange Quark Matter 2004, Cape Town, South Africa, September 15-20, 2004, references completed, published in J. Phys. G: Nucl. Part. Phys. 31 (2005) S641-S64

    Shear viscosity and chemical equilibration of the QGP

    Full text link
    We have investigated, in the frame work of the transport approach, different aspects of the QGP created in Heavy Ion Collisions at RHIC and LHC energies. The shear viscosity η\eta has been calculated by using the Green-Kubo relation at the cascade level. We have compared the numerical results for η\eta obtained from the Green-Kubo correlator with the analytical formula in both the Relaxation Time Approximation (RTA) and the Chapman-Enskog approximation (CE). From this comparison we show that in the range of temperature explored in a Heavy Ion collision the RTA underestimates the viscosity by about a factor of 2, while a good agreement is found between the CE approximation and Gree-Kubo relation already at first order of approximation. The agreement with the CE approximation supplies an analytical formula that allows to develop kinetic transport theory at fixed shear viscosity to entropy density ratio, η/s\eta/s. We show some results for the build up of anisotropic flows v2v_{2} in a transport approach at fixed shear viscosity to entropy density ratio, η/s\eta/s. We study the impact of a T-dependent η/s(T)\eta/s(T) on the generation of the elliptic flows at both RHIC and LHC. We show that the transport approach provides, in a unified way, a tool able to naturally describe the v2(pT)v_{2}(p_{T}) in a wide range of pTp_{T}, including also the description of the rise and fall and saturation of the v2(pT)v_{2}(p_{T}) observed at LHC. Finally, we have studied the evolution of the quark-gluon composition employing a Boltzmann-Vlasov transport approach that include: the mean fields dynamics, associated to the quasi-particle model, and the elastic and inelastic collisions for massive quarks and gluons. Following the chemical evolution from an initial gluon dominated plasma we predict a quark dominance close to TCT_{C} paving the way to an hadronization via quark coalescence.Comment: 15 pages, 10 figures, Invited Talk given by S. Plumari at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS
    corecore