4 research outputs found

    New semisynthetic vinca alkaloids: chemical, biochemical and cellular studies

    Get PDF
    A new semisynthetic anti-tumour bis-indol compound, KAR-2 [3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine] with lower toxicity than vinca alkaloids used in chemotherapy binds to calmodulin but, in contrast to vinblastine, does not exhibit anti-calmodulin activity. To investigate whether the modest chemical modification of bis-indol structure is responsible for the lack of anti-calmodulin potency and for the different pharmacological effects, new derivatives have been synthesized for comparative studies. The synthesis of the KAR derivatives are presented. The comparative studies showed that the spiro-oxazolidino ring and the substitution of a formyl group to a methyl one were responsible for the lack of anti-calmodulin activities. The new derivatives, similar to the mother compounds, inhibited the tubulin assembly in polymerization tests in vitro, however their inhibitory effect was highly dependent on the organization state of microtubules; bundled microtubules appeared to be resistant against the drugs. The maximal cytotoxic activities of KAR derivatives in in vivo mice hosting leukaemia P388 or Ehrlich ascites tumour cells appeared similar to that of vinblastine or vincristine, however significant prolongation of life span could be reached with KAR derivatives only after the administration of a single dose. These studies plus data obtained using a cultured human neuroblastoma cell line showed that KAR compounds displayed their cytotoxic activities at significantly higher concentrations than the mother compounds, although their antimicrotubular activities were similar in vitro. These data suggest that vinblastine/vincristine damage additional crucial cell functions, one of which could be related to calmodulin-mediated processes. © 1999 Cancer Research Campaig

    The interaction of a new anti-tumour drug, KAR-2 with calmodulin

    No full text
    1. KAR-2 (3′′-(β-chloroethyl)-2′′,4′′-dioxo-3,5′′-spiro-oxazolidino-4-deacetoxy-vinblastine) is a semisynthetic bis-indol derivative, with high anti-microtubular and anti-tumour activities but with low toxicity. KAR-2, in contrast to other biologically active bis-indols (e.g. vinblastine), did not show anti-calmodulin activity in vitro (enzyme kinetic, fluorescence anisotropy and immunological tests). 2. Direct binding studies (fluorescence resonance energy transfer, circular dichroism) provided evidence for the binding of KAR-2 to calmodulin. The binding affinity of KAR-2 to calmodulin (dissociation constant was about 5 μM) in the presence of Ca(2+) was comparable to that of vinblastine. 3. KAR-2 was able to interact with apo-calmodulin as well; in the absence of Ca(2+) the binding was of cooperative nature. 4. The effect of drugs on Ca(2+) homeostasis in human neutrophil cells was investigated by means of a specific fluorescent probe. Trifluoperazine extensively inhibited the elevation of intracellular Ca(2+) level, vinblastine did not appreciably affect it, KAR-2 stimulated the Ca(2+) influx and after a transient enhancement the Ca(2+) concentration reached a new steady-state level. 5. Comparison of the data obtained with KAR-2 and bis-indols used in chemotherapy suggests that the lack of anti-calmodulin potency resides on the spiro-oxazolidino portion of KAR-2. This character of KAR-2 manifested itself in various systems and might result in its low in vivo toxicity, established in an anti-tumour test

    Dissociation of Calmodulin-Target Peptide Complexes by the Lipid Mediator Sphingosylphosphorylcholine: IMPLICATIONS IN CALCIUM SIGNALING*

    No full text
    Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427–437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors
    corecore