70 research outputs found

    Efficient multiparticle entanglement via asymmetric Rydberg blockade

    Full text link
    We present an efficient method for producing NN particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations we predict that an N=8 Schr\"odinger cat state can be produced with a fidelity of 84% in cold Rb atoms.Comment: 3 figure

    Feshbach Molecules in a One-dimensional Optical Lattice

    Full text link
    We present the theory of a pair of atoms in a one-dimensional optical lattice interacting via a narrow Feshbach resonance. Using a two-channel description of the resonance, we derive analytic results for the scattering states inside the continuum band and the discrete bound states outside the band. We identify a Fano resonance profile, and the survival probability of a molecule when swept through the Bloch band of scattering states by varying an applied magnetic field. We discuss how these results may be used to investigate the importance of the structured nature of the continuum in experiments.Comment: 4 pages, 3 figure

    Two-channel Feshbach physics in a structured continuum

    Full text link
    We analyze the scattering and bound state physics of a pair of atoms in a one-dimensional optical lattice interacting via a narrow Feshbach resonance. The lattice provides a structured continuum allowing for the existence of bound dimer states both below and above the continuum bands, with pairs above the continuum stabilized by either repulsive interactions or their center of mass motion. Inside the band the Feshbach coupling to a closed channel bound state leads to a Fano resonance profile for the transmission, which may be mapped out by RF- or photodissociative spectroscopy. We generalize the scattering length concept to the one-dimensional lattice, where a scattering length may be defined at both the lower and the upper continuum thresholds. As a function of the applied magnetic field the scattering length at either band edge exhibits the usual Feshbach divergence when a bound state enters or exits the continuum. Near the scattering length divergences the binding energy and wavefunction of the weakly bound dimer state acquires a universal form reminiscent of those of free-space Feshbach molecules. We give numerical examples of our analytic results for a specific Feshbach resonance, which has been studied experimentally.Comment: 18 pages, 9 embedded figure

    Scattering and binding of different atomic species in a one-dimensional optical lattice

    Full text link
    The theory of scattering of atom pairs in a periodic potential is presented for the case of different atoms. When the scattering dynamics is restricted to the lowest Bloch band of the periodic potential, a separation in relative and average discrete coordinates applies and makes the problem analytically tractable, and we present a number of new results and features compared to the case of identical atoms.Comment: 5 pages, 4 figure

    Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace

    Full text link
    In this paper, we propose a way to achieve protected universal computation in a neutral atom quantum computer subject to collective dephasing. Our proposal relies on the existence of a Decoherence Free Subspace (DFS), resulting from symmetry properties of the errors. After briefly describing the physical system and the error model considered, we show how to encode information into the DFS and build a complete set of safe universal gates. Finally, we provide numerical simulations for the fidelity of the different gates in the presence of time-dependent phase errors and discuss their performance and practical feasibility.Comment: 7 pages, 8 figure

    Quantum information with Rydberg atoms

    Full text link
    Rydberg atoms with principal quantum number n >> 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n^4 and radiative lifetimes that scale as n^3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong, long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multi-qubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many body physics. We review the advances of the last decade, covering both theoretical and experimental aspects of Rydberg mediated quantum information processing.Comment: accepted version, to appear in Rev. Mod. Phys., 40 figures

    Bright solitons and soliton trains in a fermion-fermion mixture

    Full text link
    We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.Comment: 5 pages, 7 figure

    Unraveling quantum dissipation in the frequency domain

    Full text link
    We present a quantum Monte Carlo method for solving the evolution of an open quantum system. In our approach, the density operator evolution is unraveled in the frequency domain. Significant advantages of this approach arise when the frequency of each dissipative event conveys information about the state of the system.Comment: 4 pages, 4 Postscript figures, uses RevTe
    • …
    corecore