slides

Quantum information with Rydberg atoms

Abstract

Rydberg atoms with principal quantum number n >> 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n^4 and radiative lifetimes that scale as n^3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong, long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multi-qubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many body physics. We review the advances of the last decade, covering both theoretical and experimental aspects of Rydberg mediated quantum information processing.Comment: accepted version, to appear in Rev. Mod. Phys., 40 figures

    Similar works

    Full text

    thumbnail-image

    Available Versions