17 research outputs found

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    Get PDF
    Background: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. Method: Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age − chronological age) controlling for chronological age, sex, and scan site. Results: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. Discussion: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Assessment of Brain Age in Posttraumatic Stress Disorder: Findings from the ENIGMA PTSD and Brain Age Working Groups

    Get PDF
    Background Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. Method Adult subjects (N = 2229; 56.2% male) aged 18–69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age − chronological age) controlling for chronological age, sex, and scan site. Results BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. Discussion Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Traumatic brain injury treatment using a rodent model of homelessness

    No full text

    Stem Cells Attenuate the Inflammation Crosstalk Between Ischemic Stroke and Multiple Sclerosis: A Review.

    No full text
    The immense neuroinflammation induced by multiple sclerosis (MS) promotes a favorable environment for ischemic stroke (IS) development, making IS a deadly complication of MS. The overlapping inflammation in MS and IS is a prelude to the vascular pathology, and an inherent cell death mechanism that exacerbates neurovascular unit (NVU) impairment in the disease progression. Despite this consequence, no therapies focus on reducing IS incidence in patients with MS. To this end, the preclinical and clinical evidence we review here argues for cell-based regenerative medicine that will augment the NVU dysfunction and inflammation to ameliorate IS risk

    Mitochondria in Cell-Based Therapy for Stroke

    No full text
    Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke

    The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease

    No full text
    Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease

    Factors associated with hardware failure after lateral thoracolumbar fusions - A ten year case series.

    No full text
    OBJECTIVE: Thoracolumbar lateral interbody fusions (tLLIF) are one tool in the spine surgeon\u27s toolbox to indirectly decompress neuroforamina while also improving segmental lordosis in a biomechanically distinct manner from posterior fusions. When part of a concomitant posterior construct, hardware failure (HF), sometimes requiring revision surgery, can occur. We sought to study the relationship between tLLIF and HF. METHODS: We conducted a retrospective study on consecutive patents who underwent tLLIF at a single academic center between January 2012 and December 2021 by seven unique neurosurgeons. Patients were excluded if they had no posterior instrumentation within their construct or if they had less than six months of follow-up. Hardware failure was defined as screw breakage or rod fracture seen on postoperative imaging. RESULTS: 232 patients were identified; 6 (2.6 %) developed HF throughout a mean follow-up of 1182 days (range =748-1647 days). Adjacent segment disease was the most common pathology addressed (75 patients (32.3 %)). The amount of posterior instrumentation both in the surgery in question and in the total construct were significantly higher in the HF cohort (4.33 ± 1.52 levels, 5.83 ± 3.36 levels) versus the non-HF cohort (2.08 ± 0.296 levels, p = 0.014; 2.86 ± 0.316 levels, p = 0.003, respectively). The number of interbody devices added in the index surgery and in the entire construct were both significantly higher in the HF cohort (3.33 ± 0.666 interbody devices, 3.33 ± 0.666 devices) than in the non-HF cohort (1.88 ± 0.152 interbody devices, p = 0.002; 2.31 ± 0.158 devices, p = 0.036, respectively). Higher amounts of lateral levels of fusion approached significance for association with HF (HF: 2.67 ± 0.844 levels, no HF: 1.73 ± 1.26 levels, p = 0.076). On multivariate analysis, only the number of interbody devices added in the index surgery was predictive of HF (Odds ratio=2.3, 95 % confidence interval=1.25-4.23, p = 0.007). CONCLUSION: Greater levels of posterior fusion, and greater numbers of interbody devices in an index surgery and in a construct as a whole, were associated with higher rates of HF in our cohort of patients with tLLIF. Greater numbers of lateral segments fused in this population may also be related to HF

    Sequestration of Inflammation in Parkinson’s Disease via Stem Cell Therapy

    No full text
    Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration

    Minor Changes for a Major Impact: A Review of Epigenetic Modifications in Cell-Based Therapies for Stroke

    No full text
    Epigenetic changes in stroke may revolutionize cell-based therapies aimed at reducing ischemic stroke risk and damage. Epigenetic changes are a novel therapeutic target due to their specificity and potential for reversal. Possible targets for epigenetic modification include DNA methylation and demethylation, post-translational histone modification, and the actions of non-coding RNAs such as microRNAs. Many of these epigenetic modifications have been reported to modulate atherosclerosis development and progression, ultimately contributing to stroke pathogenesis. Furthermore, epigenetics may play a major role in inflammatory responses following stroke. Stem cells for stroke have demonstrated safety in clinical trials for stroke and show therapeutic benefit in pre-clinical studies. The efficacy of these cell-based interventions may be amplified with adjunctive epigenetic modifications. This review advances the role of epigenetics in atherosclerosis and inflammation in the context of stroke, followed by a discussion on current stem cell studies modulating epigenetics to ameliorate stroke damage

    Probing Interleukin-6 in Stroke Pathology and Neural Stem Cell Transplantation.

    No full text
    Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6\u27s expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults
    corecore