4,539 research outputs found

    S-Nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty

    Get PDF
    Background: The major complication of carotid angioplasty is embolic stroke, which may occur after balloon inflation and deflation or in the early postintervention period. Platelet adhesion and aggregation to the angioplasty site with subsequent embolization seems to plays a major role in early postangioplasty embolization and stroke. During this period, asymptomatic embolic signals can be detected in patients by transcranial Doppler ultrasound despite aspirin and heparin treatment. S-Nitrosoglutathione (GSNO) is a nitric oxide donor that appears to have relative platelet specificity. We evaluated its effectiveness in reducing embolization after carotid angioplasty. Methods and results: Sixteen patients undergoing carotid angioplasty and stenting for symptomatic 70% internal carotid artery stenosis were randomized in a double-blind manner to GSNO or placebo given after surgery for 90 minutes. All patients were pretreated with aspirin and given heparin for 24 hours after the procedure. Transcranial Doppler recordings were made from the ipsilateral middle cerebral artery for 1 hour before treatment and at 0 to 3, 6, and 24 hours after treatment. GSNO resulted in a rapid reduction in the frequency of embolic signals of 95% at 0 to 3 hours and 100% at 6 hours (P=0.007 and P=0.01 versus placebo, respectively). In the placebo group, 2 patients experienced ipsilateral stroke after the angioplasty. No cerebrovascular events occurred in the GSNO group. Conclusions: S-Nitrosoglutathione was highly effective in rapidly reducing the frequency of embolic signals after endovascular treatment for symptomatic high-grade carotid stenosis

    Section 1981 Liability for Racially DiscriminatorySectarian Schools

    Full text link

    Ways to Implement the Practices of the Met School Onto a Traditional Grade 3-5 Classroom

    Get PDF
    This project was designed to give grade 3-5 teachers ideas to implement in their classrooms based on the practices of the Metropolitan Regional Career and Technical Center (The Met) in Providence, Rhode Island. The Met School is a high school where personalization, interest-based learning, exhibitions, real-life experiences and parent communication are their main focuses. This in-service presentation focuses on ways to make a classroom more personalized, how to manage a classroom where each student is doing a project of his or her own interest, how to prepare students to do a quarterly exhibition and the importance of communication among students, parents, teachers, and administrators. The intended use of these practices is for teachers to modify the way children and parents are treated both on an academic and on a personal level in their schools and classrooms

    Dynamics of Epidemics

    Full text link
    This article examines how diseases on random networks spread in time. The disease is described by a probability distribution function for the number of infected and recovered individuals, and the probability distribution is described by a generating function. The time development of the disease is obtained by iterating the generating function. In cases where the disease can expand to an epidemic, the probability distribution function is the sum of two parts; one which is static at long times, and another whose mean grows exponentially. The time development of the mean number of infected individuals is obtained analytically. When epidemics occur, the probability distributions are very broad, and the uncertainty in the number of infected individuals at any given time is typically larger than the mean number of infected individuals.Comment: 4 pages and 3 figure

    Simple Local Computation Algorithms for the General Lovasz Local Lemma

    Full text link
    We consider the task of designing Local Computation Algorithms (LCA) for applications of the Lov\'{a}sz Local Lemma (LLL). LCA is a class of sublinear algorithms proposed by Rubinfeld et al.~\cite{Ronitt} that have received a lot of attention in recent years. The LLL is an existential, sufficient condition for a collection of sets to have non-empty intersection (in applications, often, each set comprises all objects having a certain property). The ground-breaking algorithm of Moser and Tardos~\cite{MT} made the LLL fully constructive, following earlier results by Beck~\cite{beck_lll} and Alon~\cite{alon_lll} giving algorithms under significantly stronger LLL-like conditions. LCAs under those stronger conditions were given in~\cite{Ronitt}, where it was asked if the Moser-Tardos algorithm can be used to design LCAs under the standard LLL condition. The main contribution of this paper is to answer this question affirmatively. In fact, our techniques yield LCAs for settings beyond the standard LLL condition

    Generalized percolation in random directed networks

    Full text link
    We develop a general theory for percolation in directed random networks with arbitrary two point correlations and bidirectional edges, that is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions

    Evolution equation for a model of surface relaxation in complex networks

    Full text link
    In this paper we derive analytically the evolution equation of the interface for a model of surface growth with relaxation to the minimum (SRM) in complex networks. We were inspired by the disagreement between the scaling results of the steady state of the fluctuations between the discrete SRM model and the Edward-Wilkinson process found in scale-free networks with degree distribution P(k)kλ P(k) \sim k^{-\lambda} for λ<3\lambda <3 [Pastore y Piontti {\it et al.}, Phys. Rev. E {\bf 76}, 046117 (2007)]. Even though for Euclidean lattices the evolution equation is linear, we find that in complex heterogeneous networks non-linear terms appear due to the heterogeneity and the lack of symmetry of the network; they produce a logarithmic divergency of the saturation roughness with the system size as found by Pastore y Piontti {\it et al.} for λ<3\lambda <3.Comment: 9 pages, 2 figure

    Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities

    Full text link
    Many complex networks display a mesoscopic structure with groups of nodes sharing many links with the other nodes in their group and comparatively few with nodes of different groups. This feature is known as community structure and encodes precious information about the organization and the function of the nodes. Many algorithms have been proposed but it is not yet clear how they should be tested. Recently we have proposed a general class of undirected and unweighted benchmark graphs, with heterogenous distributions of node degree and community size. An increasing attention has been recently devoted to develop algorithms able to consider the direction and the weight of the links, which require suitable benchmark graphs for testing. In this paper we extend the basic ideas behind our previous benchmark to generate directed and weighted networks with built-in community structure. We also consider the possibility that nodes belong to more communities, a feature occurring in real systems, like, e. g., social networks. As a practical application, we show how modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E. The code to create the benchmark graphs can be freely downloaded from http://santo.fortunato.googlepages.com/inthepress

    The impact of boron hybridisation on photocatalytic processes

    Get PDF
    Recently the fruitful merger of organoboron chemistry and photocatalysis has come to the forefront of organic synthesis resulting in the development of new technologies to access complex (non)borylated frameworks. Central to the success of this combination is control of boron hybridisation. Contingent on the photoactivation mode, boron as its neutral planar form or tetrahedral boronate can be used to regulate reactivity. This minireview highlights the current state of the art in photocatalytic processes utilising organoboron compounds paying particular attention to the role of boron hybridisation for the target transformation

    Continuously advancing quality care

    Get PDF
    corecore