3,106 research outputs found

    XNect: Real-time Multi-person 3D Human Pose Estimation with a Single RGB Camera

    No full text
    We present a real-time approach for multi-person 3D motion capture at over 30 fps using a single RGB camera. It operates in generic scenes and is robust to difficult occlusions both by other people and objects. Our method operates in subsequent stages. The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals. We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. In the second stage, a fully-connected neural network turns the possibly partial (on account of occlusion) 2D pose and 3D pose features for each subject into a complete 3D pose estimate per individual. The third stage applies space-time skeletal model fitting to the predicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose, and enforce temporal coherence. Our method returns the full skeletal pose in joint angles for each subject. This is a further key distinction from previous work that neither extracted global body positions nor joint angle results of a coherent skeleton in real time for multi-person scenes. The proposed system runs on consumer hardware at a previously unseen speed of more than 30 fps given 512x320 images as input while achieving state-of-the-art accuracy, which we will demonstrate on a range of challenging real-world scenes

    Controlling crystal cleavage in Focused Ion Beam shaped specimens for surface spectroscopy

    Full text link
    Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). Both require atomically clean and flat crystal surfaces which traditionally are prepared by in-situ mechanical cleaving in ultrahigh vacuum chambers. We present a new approach that addresses three main issues of the current state-of-the-art methods: 1) Cleaving is a highly stochastic and thus inefficient process; 2) Fracture processes are governed by the bonds in a bulk crystal, and many materials and surfaces simply do not cleave; 3) The location of the cleave is random, preventing data collection at specified regions of interest. Our new workflow is based on Focused Ion Beam (FIB) machining of micro-stress lenses in which shape (rather than crystalline) anisotropy dictates the plane of cleavage, which can be placed at a specific target layer. As proof-of-principle we show ARPES results from micro-cleaves of Sr2_2RuO4_4 along the ac plane and from two surface orientations of SrTiO3_3, a notoriously difficult to cleave cubic perovskite

    Quasi-symmetry-protected topology in a semi-metal

    Get PDF
    The crystal symmetry of a material dictates the type of topological band structure it may host, and therefore, symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call ‘quasi-symmetry’. This is the situation where a Hamiltonian has exact symmetry at a lower order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine tuning as they enforce that sources of large Berry curvature occur at arbitrary chemical potentials. We demonstrate that quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications

    Scale-invariant magnetic anisotropy in RuCl3_3 at high magnetic fields

    Full text link
    In RuCl3_3, inelastic neutron scattering and Raman spectroscopy reveal a continuum of non-spin-wave excitations that persists to high temperature, suggesting the presence of a spin liquid state on a honeycomb lattice. In the context of the Kitaev model, magnetic fields introduce finite interactions between the elementary excitations, and thus the effects of high magnetic fields - comparable to the spin exchange energy scale - must be explored. Here we report measurements of the magnetotropic coefficient - the second derivative of the free energy with respect to magnetic field orientation - over a wide range of magnetic fields and temperatures. We find that magnetic field and temperature compete to determine the magnetic response in a way that is independent of the large intrinsic exchange interaction energy. This emergent scale-invariant magnetic anisotropy provides evidence for a high degree of exchange frustration that favors the formation of a spin liquid state in RuCl3_3.Comment: arXiv admin note: substantial text overlap with arXiv:1901.09245. Nature Physic

    Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.

    Get PDF
    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated

    Why do dogs (Canis familiaris) select the empty container in an observational learning task?

    Get PDF
    Many argue that dogs show unique susceptibility to human communicative signals that make them suitable for being engaged in complex co-operation with humans. It has also been revealed that socially provided information is particularly effective in influencing the behaviour of dogs even when the human’s action demonstration conveys inefficient or mistaken solution of task. It is unclear, however, how the communicative nature of the demonstration context and the presence of the human demonstrator affect the dogs’ object-choice behaviour in observational learning situations. In order to unfold the effects of these factors, 76 adult pet dogs could observe a communicative or a non-communicative demonstration in which the human retrieved a tennis ball from under an opaque container while manipulating another distant and obviously empty (transparent) one. Subjects were then allowed to choose either in the presence of the demonstrator or after she left the room. Results showed a significant main effect of the demonstration context (presence or absence of the human’s communicative signals), and we also found some evidence for the response-modifying effect of the presence of the human demonstrator during the dogs’ choice. That is, dogs predominantly chose the baited container, but if the demonstration context was communicative and the human was present during the dogs’ choice, subjects’ tendency to select the baited container has been reduced. In agreement with the studies showing sensitivity to human’s communicative signals in dogs, these findings point to a special form of social influence in observational learning situations when it comes to learning about causally opaque and less efficient (compared to what comes natural to the dog) action demonstrations

    hypersaline infusion protocol through the portal vein may focus electroporation on tumor tissue, but is it really safe? Ppreliminary results

    Get PDF
    Introduction: irreversible Electroporation (IRE) is highly dependent on the electrical conductivity of the tissue and the high conductivity of tumor tissue, which leads to a lower field than that in the surrounding healthy tissue. Hypersaline Infusion (HI) through the portal vein focuses IRE on scattered liver tumors, by creating a differential conductivity between the different types of tissue. The aim of this study is to determine the effects of the HI protocol on the hepatic and histological biochemical results. Methods: Ten male Sprague Dawley rats were used for HI protocol. Blood samples were collected at pre-, immediately post-, 24-hrs, 72-hrs, 1- week and 3-weeks post-HI. All the animals were sacrificed after a one-month follow-up in order to collect histological samples. Results: The mortality rate in this procedure reached 30% (3/10). Only the pH and transaminases at 24-hrs were significantly and directly linked to mortality (p=0.036 and p=0.004, respectively). The three non-surviving animals had a four-time higher AST level at 24-hrs. Natremianormalized at 24-hrs post-HI. Statistically significant differences were found in hepatic necrosis between the non-surviving (n=3) and surviving rats (n=7) (30.67 ± 10.97 vs. 2.86 ± 7.56% respectively, p=0.01). Discussion: HI through the portal system involves a significant risk of possibly lethal cytolysis and acidosis. Therefore, compensatory measures and a reduced saline overload are warranted to improve the survival rates
    • 

    corecore