326 research outputs found
PIRS: Python-based framework for coupled MC-TH reactor calculations
We develop a set of Python packages to provide a modern programming interface to codes used for analysis of nuclear reactors. Currently implemented interfaces to the Monte Carlo (MC) neutronics code MCNP and thermo-hydraulic (TH) code SCF allow efficient description of calculation models and provide a framework for coupled calculations. In this paper we illustrate how these interfaces can be used to describe a pin model, and report results of coupled MCNP-SCF calculations performed for a PWR fuel assembly, organized by means of the interfaces
Effect of cell separation on gene expression and DNA methylation profiles in intestinal epithelial cells
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Dirac Spectrum in Piecewise Constant One-Dimensional Potentials
We study the electronic states of graphene in piecewise constant potentials
using the continuum Dirac equation appropriate at low energies, and a transfer
matrix method. For superlattice potentials, we identify patterns of induced
Dirac points which are present throughout the band structure, and verify for
the special case of a particle-hole symmetric potential their presence at zero
energy. We also consider the cases of a single trench and a p-n junction
embedded in neutral graphene, which are shown to support confined states. An
analysis of conductance across these structures demonstrates that these
confined states create quantum interference effects which evidence their
presence.Comment: 10 pages, 12 figures, additional references adde
Quantum dots and spin qubits in graphene
This is a review on graphene quantum dots and their use as a host for spin
qubits. We discuss the advantages but also the challenges to use graphene
quantum dots for spin qubits as compared to the more standard materials like
GaAs. We start with an overview of this young and fascinating field and will
then discuss gate-tunable quantum dots in detail. We calculate the bound states
for three different quantum dot architectures where a bulk gap allows for
confinement via electrostatic fields: (i) graphene nanoribbons with armchair
boundary, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer
graphene. In order for graphene quantum dots to be useful in the context of
spin qubits, one needs to find reliable ways to break the valley-degeneracy.
This is achieved here, either by a specific termination of graphene in (i) or
in (ii) and (iii) by a magnetic field, without the need of a specific boundary.
We further discuss how to manipulate spin in these quantum dots and explain the
mechanism of spin decoherence and relaxation caused by spin-orbit interaction
in combination with electron-phonon coupling, and by hyperfine interaction with
the nuclear spin system.Comment: 23 pages, 10 figures, topical review prepared for Nanotechnolog
Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors
It is promising to apply quantum-mechanically confined graphene systems in
field-effect transistors. High stability, superior performance, and large-scale
integration are the main challenges facing the practical application of
graphene transistors. Our understandings of the adatom-graphene interaction
combined with recent progress in the nanofabrication technology indicate that
very stable and high-quality graphene nanostripes could be integrated in
substrate-supported functionalized (hydrogenated or fluorinated) graphene using
electron-beam lithography. We also propose that parallelizing a couple of
graphene nanostripes in a transistor should be preferred for practical
application, which is also very useful for transistors based on graphene
nanoribbon.Comment: Frontiers of Physics (2012) to be publishe
Dirac electrons in graphene-based quantum wires and quantum dots
In this paper we analyse the electronic properties of Dirac electrons in
finite-size ribbons and in circular and hexagonal quantum dots made of
graphene.Comment: Contribution for J. Phys.: Cond. Mat. special issue on graphene
physic
Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas
Bio-catalytic processes for sustainable production of chemicals and fuels receive increased attention within the concept of circular economy. Strategies to improve these production processes include genetic engineering of bio-catalysts or process technological optimization. Alternatively, synthetic microbial co-cultures can be used to enhance production of chemicals of interest. It remains often unclear however how microbe to microbe interactions affect the overall production process and how this can be further exploited for application. In the present study we explored the microbial interaction in a synthetic co-culture of Clostridium autoethanogenum and Clostridium kluyveri, producing chain elongated products from carbon monoxide. Monocultures of C. autoethanogenum converted CO to acetate and traces of ethanol, while during co-cultivation with C. kluyveri, it shifted its metabolism significantly towards solventogenesis. In C. autoethanogenum, expression of the genes involved in the central carbon- and energy-metabolism remained unchanged during co-cultivation compared to monoculture condition. Therefore the shift in the metabolic flux of C. autoethanogenum appears to be regulated by thermodynamics, and results from the continuous removal of ethanol by C. kluyveri. This trait could be further exploited, driving the metabolism of C. autoethanogenum to solely ethanol formation during co-cultivation, resulting in a high yield of chain elongated products from CO-derived electrons. This research highlights the important role of thermodynamic interactions in (synthetic) mixed microbial communities and shows that this can be exploited to promote desired conversions.The research leading to these results has received funding from the Netherlands Ministry of Education, Culture and Science and from the Netherlands Science Foundation (NWO) under the Gravitation Grant nr. 024.002.002 and Programme ‘Closed Cycles’ with Project nr. ALWGK.2016.029.info:eu-repo/semantics/publishedVersio
- …