130 research outputs found

    Adaptive Sampling of Phytoplankton Responses to Episodic Physical Forcing in the Nearshore Coastal Ocean

    Get PDF
    The original proposal focused on the linkages between in-water physical, biological and optical dynamics and to assess the degree to which remote sensing could be applied. These areas were approached during the 2001 sampling season and with follow on studies, as part of the extension of the grant through the PECASE award, there are three specific areas of work that have evolved from these original efforts. The first is a further examination of the coherence between convergence zones, general current patterns and spatial distribution of in-water biological signals (phytoplankton). The second is a remote sensing focus, attempting to define the critical spatial scales for biology in the coastal environment and the third, which is related, is developing a new tool for in situ spatial validation of remotely sensed products. For clarity, this final technical report will begin with a general description of the sampling effort followed by results from these three areas and products produced by this project

    Evaluation of bio-optical inversion of spectral irradiance measured from an autonomous underwater vehicle

    Get PDF
    Autonomous underwater vehicles (AUVs) can map water conditions at high spatial (horizontal and vertical) and temporal resolution, including under cloudy conditions when satellite and airborne remote sensing are not feasible. As part of the RADYO program, we deployed a passive radiometer on an AUV in the Santa Barbara Channel and off the coast of Hawaii to apply existing bio-optical algorithms for characterizing the optical constituents of coastal seawater (i.e., dissolved organic material, algal biomass, and other particles). The spectral differences between attenuation coefficients were computed from ratios of downwelling irradiance measured at depth and used to provide estimates of the in-water optical constituents. There was generally good agreement between derived values of absorption and concurrent measurements of this inherent optical property in Santa Barbara Channel. Wave focusing, cloud cover, and low attenuation coefficients influenced results off the coast of Hawaii and are used to evaluate the larger-scale application of these methods in the near surface coastal oceans

    Physical Forcing of Phytoplankton Community Structure and Primary Production in Continental Shelf Waters of the Western Antarctic Peninsula

    Get PDF
    Analyses of a multidisciplinary data set, collected in continental shelf waters of the Western Antarctic Peninsula (WAP) during austral summer of January 1993, identified a previously unrecognized forcing mechanism that sets up a physical and chemical structure that supports and assures site-specific diatom-dominated communities and enhanced biological production (Prézelin et al., 2000). This forcing is active when the southern boundary of the Antarctic Circumpolar Current (ACC) flows along the shelf edge, thereby facilitating onshelf bottom intrusions of nutrient-rich Upper Circumpolar Deep Water (UCDW), which then is upwelled or mixed into the upper water column. At times or locations where UCDW is not introduced to the upper water column, diatoms no longer dominate phytoplankton assemblages over the mid- to outer WAP continental shelf. This analysis extends the area and seasons studied through similar analyses of multidisciplinary data sets collected on four additional cruises to the WAP that cover all seasons. Results show that onshelf intrusions of UCDW: (1) occur in other regions of the WAP continental shelf; (2) are episodic; (3) are forced by nonseasonal physical processes; and (4) produce areas of diatom-dominated phytoplankton assemblages and enhanced primary production. At times, multiple intrusions are observed on the WAP continental shelf, and each event may be in a different stage. Further, the occurrence of an intrusion event in one area does not necessarily imply that similar events are ongoing in other areas along the WAP shelf. The UCDW bottom intrusions originate along the outer shelf but they can extend into the inner shelf region because the deep troughs that transect the WAP shelf provide connections between the inner and outer shelf. The boundary between the intruded water and the shelf water is variable in location because of the episodic nature of the onshelf intrusions, and is moved farther inshore as an event occurs. These observations show clearly that the phytoplankton community structure on the WAP shelf is determined by physical forcing and that primary production is likely to be considerably greater than previously believed. Moreover, variability in this physical forcing, such as may occur via climate change, can potentially affect the overall biological production of the WAP continental shelf system

    Integrated measurements of acoustical and optical thin layers I: Vertical scales of association

    Get PDF
    This study combined measurements from multiple platforms with acoustic instruments on moorings and on a ship and optics on a profiler and an autonomous underwater vehicle (AUV) to examine the relationships between fluorescent, bioluminescent, and acoustically scattering layers in Monterey Bay during nighttime hours in July and August of 2006 and May of 2008. We identified thin bioluminescent layers that were strongly correlated with acoustic scattering at the same depth but were part of vertically broad acoustic features, suggesting layers of unique composition inside larger biomass features. These compositional thin layers nested inside larger biomass features may be a common ecosystem component and are likely to have significant ecological impacts but are extremely difficult to identify as most approaches capable of the vertical scales of measurement necessary for the identification of sub-meter scale patterns assess bulk properties rather than specific layer composition. Measurements of multiple types of thin layers showed that the depth offset between thin phytoplankton and zooplankton layers was highly variable with some layers found at the same depth but others found up to 16 m apart. The vertical offset between phytoplankton and zooplankton thin layers was strongly predicted by the fraction of the water column fluorescence contained within a thin phytoplankton layer. Thin zooplankton layers were only vertically associated with thin phytoplankton layers when the phytoplankton in a layer accounted for more than about 18–20% of the water column chlorophyll. Trophic interactions were likely occurring between phytoplankton and zooplankton thin layers but phytoplankton thin layers were exploited by zooplankton only when they represented a large fraction of the available phytoplankton, suggesting zooplankton have some knowledge of the available food over the entire water column. The horizontal extent of phytoplankton layers, discussed in the second paper in this series, is likely an important factor contributing to this selective exploitation by zooplankton. The pattern of vertical offset between phytoplankton and zooplankton layers was consistent between studies in different years and using different combinations of platforms, indicating the importance of the relationship between zooplankton layers and the fraction of phytoplankton within a layer at night within Monterey Bay. These results highlight the value of integrating measurements of various types of organisms to understand thin layers processes and the importance of assessing ecological interactions in plankton thin layers within the context of the properties of the entire water column, like the animals themselves do

    Observed and Modeled Bio-Optical, Bioluminescent, and Physical Properties During a Coastal Upwelling Event in Monterey Bay, California

    Get PDF
    During spring and summer time, coastal upwelling influences circulation and ecosystem dynamics of the Monterey Bay, California, which is recognized as a National Marine Sanctuary. Observations of physical, bio‐optical properties (including bioluminescence) together with results from dynamical biochemical and bioluminescence models are used to interpret the development of the upwelling event during August 2003 in Monterey Bay, California. Observations and the biochemical model show the development of a phytoplankton bloom in the southern portion of Monterey Bay. Model results show an increase of nutrients in the southern portion of the bay, where nutrient‐rich water masses are brought in by the southward flow and cyclonic circulation inside the bay. This increase in nutrients together with the sluggish circulation in the southern portion of the bay provides favorable conditions for phytoplankton growth. Our observations and models suggest that with the development of upwelling the offshore water masses with the subsurface layer of bioluminescent zooplankton were replaced by water masses advected from the northern coast of the bay with a relatively high presence of mostly nonbioluminescent phytoplankton. Inshore observations from autonomous underwater vehicles (AUVs) show consistent coincidence of chlorophyll, backscatter, and bioluminescence maxima during upwellingdevelopment. Offshore AUV observations (taken at the entrance to the bay) show a deeper bioluminescence maximum below the surface layers of high chlorophyll and backscatter values during the earlier stages of upwelling development. Later, the observed deep offshore bioluminescence maximum disappeared and became a shallower and much weaker signal, coinciding with high chlorophyll and backscatter values offshore. Based on the biochemical and bioluminescence models, a methodology for estimating the nighttime water leaving radiance due to stimulated bioluminescence is demonstrated and evaluated

    Zooplankton Avoidance of a Profiled Open-Path Fluorometer

    Get PDF
    Significant avoidance of acoustically detected zooplankton was observed in response to a profiling instrument package. Avoidance decreased acoustic scattering from zooplankton averaged over the entire profile by more than a factor of 2, while the maximum avoidance decreased zooplankton acoustic scattering by a factor of 15 over the depth of some discrete scattering layers. Experimental manipulation of the profiler and its instruments revealed that an open-path fluorometer was triggering the avoidance. Avoidance occurred at an average of 8 m below the profiler with a range between 2 and 13 m. Effect range was positively correlated with the average attenuation coefficient of light over the effect range and consistently resulted in avoidance when light levels of approximately 0.013 µmol photons m−2 s−1 were received by the zooplankton. These results have important implications for the analysis of zooplankton data collected from platforms carrying open-path fluorometers and may also warrant careful interpretation of optical measurements from these packages

    Drosophila Apc2 Is a Cytoskeletally-Associated Protein That Regulates Wingless Signaling in the Embryonic Epidermis

    Get PDF
    The tumor suppressor adenomatous polyposis coli (APC) negatively regulates Wingless (Wg)/Wnt signal transduction by helping target the Wnt effector β-catenin or its Drosophila homologue Armadillo (Arm) for destruction. In cultured mammalian cells, APC localizes to the cell cortex near the ends of microtubules. Drosophila APC (dAPC) negatively regulates Arm signaling, but only in a limited set of tissues. We describe a second fly APC, dAPC2, which binds Arm and is expressed in a broad spectrum of tissues. dAPC2's subcellular localization revealed colocalization with actin in many but not all cellular contexts, and also suggested a possible interaction with astral microtubules. For example, dAPC2 has a striking asymmetric distribution in neuroblasts, and dAPC2 colocalizes with assembling actin filaments at the base of developing larval denticles. We identified a dAPC2 mutation, revealing that dAPC2 is a negative regulator of Wg signaling in the embryonic epidermis. This allele acts genetically downstream of wg, and upstream of arm, dTCF, and, surprisingly, dishevelled. We discuss the implications of our results for Wg signaling, and suggest a role for dAPC2 as a mediator of Wg effects on the cytoskeleton. We also speculate on more general roles that APCs may play in cytoskeletal dynamics
    corecore