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Autonomous underwater vehicles (AUVs) can map water conditions at high spatial 
(horizontal and vertical) and temporal resolution, including under cloudy conditions 
when satellite and airborne remote sensing are not feasible. As part of the RADYO 
program, we deployed a passive radiometer on an AUV in the Santa Barbara Channel and 
off the coast of Hawaii to apply existing bio-optical algorithms for characterizing the 
optical constituents of coastal seawater (i.e., dissolved organic material, algal biomass, and 
other particles). The spectral differences between attenuation coefficients were computed 
from ratios of downwelling irradiance measured at depth and used to provide estimates of 
the in-water optical constituents. There was generally good agreement between derived 
values of absorption and concurrent measurements of this inherent optical property in 
Santa Barbara Channel. Wave focusing, cloud cover, and low attenuation coefficients 
influenced results off the coast of Hawaii and are used to evaluate the larger-scale 
application of these methods in the near surface coastal oceans. 

1. Introduction 

[2] Synoptic characterization of optical properties at a 
given location relies on above water remote sensing from 
satellites and airborne platforms. Dependent on location, 
these observations can be highly impacted by aerosols and 
cloud cover, are weighted to characterizing surface waters, 
and often do not provide continuous coverage. The pre
dominant method of characterizing water column optical 
properties has been with in situ sensors on moorings either at 
fixed depths [Smith et al., 1991; Dickey et al., 1998] or with 
profiling capabilities [McManus et al., 2003]. While pro
viding important measurements independent of cloud cover 
at high temporal resolutions, these approaches lack spatial 
coverage. As highlighted by Dickey et al. [2008], the 
development and application of autonomous underwater 
vehicles (AUVs) by the oceanographic community allows 
for addressing both temporal and spatial scales of interest. 
Integration of optical sensors into AUVs allows for unprec
edented resolution of the vertical and horizontal distribution 
of optical constituents given the flexibility in flight patterns 
[Griffiths et al., 2001; Griffiths, 2002; Moline et al., 2005; 
Rudnick and Perry, 2003; Dickey et al., 2008] and ability for 

adaptive sampling of the surrounding environment [Popa 
et al., 2004; Leonard et al., 2007; McGann et al., 2009]. 
There have been a number of recent examples using AUVs 
to evaluate optical variability and dynamics in the ocean. Yu 
et al. [2002] was one of the first to integrate optical back-
scatter in an AUV to evaluate particle resuspension events 
in Massachusetts Bay. Using the large Autosub AUV, 
Cunningham et al. [2003] were able to integrate a number 
of relatively large commercial instruments to map an optical 
frontal boundary and attribute changes in inherent optical 
properties (IOPs) to changes in phytoplankton community 
structure. These measurements were well correlated with 
satellite remote sensing and with discrete in situ samples. 
Brown et al. [2004] were the first to mount a radiometer on 
an AUV to quantify and map optical constituents along the 
coastline of New Jersey. The processes governing large 
scale bottom boundary dynamics and water column optical 
thin layers have been revealed using an AUV by Ryan et al. 
[2005] and Ryan et al. [2008], respectively. Using an irra
diance meter integrated on an AUV, Wijesekera et al. 
[2005] found that variability in irradiance between 1 and 
20 m spatial scales was attributed to the focusing effects of 
surface wave geometry, with the dominant wavelength of 
focusing at depths of 2–6 m about 2 m. With the develop
ment of a hyperspectral absorption meter [Millie et al., 
1997; Kirkpatrick et al., 2003] and integration into an 
AUV, Robbins et al. [2006] were able to delineate and 
quantify the concentration of a target harmful algae species 
on the West Florida Shelf. Moline et al. [2007] used in situ 
reflectance measurements from radiometers integrated in an 
AUV to characterize and differentiate bottom habitats. 
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Figure 1. (a) REMUS autonomous underwater vehicle (AUV) with an integrated 7 wavelength radiom
eter for downwelling irradiance used in this study. Deployment sites for the AUV in (b) the Santa Barbara 
Channel on 14 and 15 September 2008 and (c) southwest of the island of Hawaii on 5 and 6 September 
2009. 

Combining a series of AUV missions in a variety of coastal 
environments, the sub-kilometer length scales of optical 
variability were quantified allowing for error prediction in 
the assessment of optical variability based solely on sam
pling resolution in these environments [Blackwell et al., 
2008; Moline et al., 2010]. Results from these examples 
demonstrate the importance of integration of optical sensors 
in these mobile platforms to address scales of variability in 
the ocean not previously possible. In addition to pioneering 
new approaches in applying these technologies as demon
strated by these studies, it is equally important to continue 
to apply these approaches over a range of time and space 
scales in different regions to evaluate the sources of optical 
variability and the limits of a given technique. 
[3] As part of this study, we employ a modified method 

developed by Brown et al. [2004] to quantify and evaluate 
the optical constituents from two field locations using an 
AUV outfitted with a multispectral downwelling irradiance 
sensor. This effort is part of the larger Radiance in a 
Dynamic Ocean (RaDyO) program developed to examine 
time-dependent oceanic radiance distribution in relation to 
dynamic surface boundary layer (SBL) processes, with the 
development of a radiance-based SBL model (T. Dickey 
et al., Introduction to special section, manuscript in prepa
ration, 2012) being a primary objective. This study evalu
ates the highly resolved spatial/temporal variability in the 
optical constituents [i.e., phytoplankton, colored dissolved 
organic matter (cDOM), and nonalgal particulates] which 
directly influence the radiance distribution in the water 
column and can be used to inform and/or validate the SBL 

model. Autonomous underwater vehicles are increasing 
being employed in field studies in an effort to address 
spatial scales and variability [Blackwell et al., 2008]. While 
they continue to demonstrate their utility in addressing scale 
in the ocean [Dickey et al., 2008], it is important to con
tinually assess their appropriateness for any particular 
application. Here, data from two optically different loca
tions, Santa Barbara Channel and southwest of the Hawai
ian Islands, were collected with an AUV to compare sites, 
evaluate the effects of surface conditions, and address any 
thresholds for universal application of this technique. 

2. Methods 

2.1. Field Measurements 

[4] As part of the RaDyO program, a REMUS-100 AUV 
(Figure 1a) was deployed with a payload consisting of a 
Neil Brown conductivity-temperature sensor, an active 
fluorometer/backscatter sensor (EcoTriplet, WETLabs Inc.) 
measuring chlorophyll a (Chl a) fluorescence, cDOM 
fluorescence, and optical backscatter (650 nm), and a pas
sive optical sensor measuring Ed(l) (OCR-507, Satlantic 
Inc.) with 7 channels centered at 412, 443, 490, 532, 555, 
670, and 683 nm (HMBW = 10 nm). Data were collected at 
2 Hz with a nominal vehicle speed of 1.7 m s-1, yielding a 
horizontal data resolution of 0.85 m for the optical mea
surements. As mentioned by Brown et al. [2004], the use of 
spectral attenuation of downwelling light, Kd(l), rather than 
reflectance, is the basis of this analysis for a number of 



reasons. In coastal regions, such as the Santa Barbara 
Channel, high levels of cDOM can reduce the depth at 
which upwelling radiance is available in the blue wave
lengths to accurately estimate the amount of cDOM. 
Roesler and Boss [2003] found that in most open ocean and 
coastal waters attenuation is weakly influenced by back-
scattering and thus is not critical for inverse models of 
reflectance. Finally, only one sensor is required to measure 
the downwelling light field, eliminating the requirement for 
absolute synchronization between two sensors for a reflec
tance measurement which would be desired on a rapidly 
moving AUV platform. 
[5] The REMUS AUV used in this study is a propeller 

driven platform with a length of 2 m, 19 cm in diameter, 
with a weight of 50 kg. Background information on the 
vehicle and vehicle performance is detailed by Moline et al. 
[2005]. The AUV nominally used a single dead reckoning 
navigation mode to complete the missions. In this mode, the 
vehicle used the onboard compass to maintain a bearing after 
submerging. As the vehicle would drift off course due to 
currents and known �2.3° errors in the compass [Moline 
et al., 2005], the vehicle was programmed to repeatedly 
return to the surface for a GPS fix approximately every 1– 
2 km (or every 10–20 min). After the GPS fix, the vehicle 
would attempt to reacquire the pre-programmed course. 
Based on the known surface GPS locations during the 
missions and an assumption that the drift was constant 
from point to point, the actual course of the vehicle was 
re-navigated as a post-processing step for improved location 
accuracy. Based on previous work, it is estimated that the 
difference between the reported location and the actual 
position was less than 50m in these open ocean conditions 
[Hibler et al., 2008]. 
[6] The vehicle was deployed between 10:00 and 14:00 

twice in the Santa Barbara Channel during September 2008, 
both under constant wind and broken cloudy sky conditions 
(Figure 1b). The vehicle was deployed 1 km off the coast of 
Santa Barbara, flew at a constant depth to the site of the 
RADYO experiment and conducted a series of clockwise 
box maneuvers beginning in the southeast corner closest 
to the R/V Kilo Moana and the R/P Flip (Dickey et al., 
manuscript in preparation, 2012). On 14 September, the 
vehicle conducted an undulation mission around the box 
(2 km per side) between 2 and 40 m, followed by a series of 
constant depth missions. On 15 September, the vehicle 
conducted the identical mission as the previous day with the 
addition of another undulating lap around the box. After 
conducting the box missions in the experimental area, the 
vehicle returned at constant depth to Santa Barbara for 
retrieval. As this study is inverting changes in irradiance as 
a function of depth to reveal optical constituents, only the 
undulation missions are used here for the inversion. 
[7] The second location of deployment was �200 km 

southwest of the Big Island of Hawaii (Figure 1c) (see 
Dickey et al., manuscript in preparation, 2012). The REMUS 
AUV was deployed in the morning from 09:00 to 12:00 
from the R/V Kilo Moana in September 2009, with the 
vehicle on both 5 and 6 September flying “L” patterns to the 
southwest of the ship. On both days the vehicle undulated 
between 2 and 95 m on this pattern followed by constant 
depths before returning to the vicinity of the ship for 

retrieval. As the ship was drifting with consistent winds to 
the southwest with R/P Flip, there was a 20 km difference in 
position between the two days. There were broken clouds on 
both days with increased intermittency in clouds cover on 
the first deployment. For both locations, horizontal missions 
were conducted and used to evaluate effects of surface 
waves on the internal light field. Depths for Santa Barbara 
Channel were 1.5, 5, and 10 m. Depths for Hawaii were 5, 
10, 15, 20, and 25 m for 5 September 2009 and 2, 4, 6, 12, 
18 and 30 m on 6 September 2009. Derived data from the 
vehicle were also compared to the absorption coefficients 
measured with a WET Labs AC-S following procedures 
outlined by Nencioli et al. [2010]. 

2.2. Data Treatment 

[8] As the calculation of Kd(l) is integral in deriving 
optical properties in the water column, a number of steps 
were taken to minimize the variance in Ed(l), including data 
filtering based on vehicle orientation as well as direct treat
ment of the Ed(l) data. The mean AUV pitch for this study 
(both field locations) was a forward incline (relative to the 
vehicle) of 1.2 ± 4.3° (median was 1.3°). Ninety-six percent 
of the irradiance data were collected with attitudes less than 
6°. Given the limit of 10° attitude recommended by the 
SeaWiFS protocols [Mueller and Fargion, 2002], 3% of the 
data set were removed. These data occurred when the vehi
cle would surface for occasional GPS fixes (see below) and 
were not part of the underway data set used in this study. 
[9] Following Brown et al. [2004], the 670 and 683 nm 

wavelengths were not used in this analysis as they are 
influenced by sun-induced Chl a fluorescence [Maritorena 
et al., 2000], Raman scattering [Marshall and Smith, 1990], 
and water absorption. Furthermore, dark values were identi
fied for each wavelength as the value of Ed(l,z) when ln 
(Ed(l, z)) no longer changed linearly with depth, and were 
then subtracted from all Ed(l,z) measurements. In addition, a 
minimum Ed(l) value was chosen for each wavelength as a 
quality control cutoff representing when the signal was too 
low for accurate detection. Calculations for Kd(l) were made 
over small depth intervals during both ascent and descent of 
the vehicle, as was done with profiling radiometers assuming 
that surface irradiance does not vary over the time interval 
between observations [Mitchell et al., 2000]. The Kd(l) 
were then estimated by linear regression of the log trans
formed Ed(l,z) data over 3-m depth intervals representing 
30 Ed(l,z) measurements (the average ascent/descent rate 
was �0.2 m s-1 at a sampling rate of 2 Hz). The values 
for which the fit had a correlation coefficient lower than 
0.7 were excluded from the analysis. While there may be 
increased error in the near surface due to wave focusing 
[Wijesekera et al., 2005], these effects would be minimized 
given the vehicle was operating below 2–3 m at all times, the 
use of the moving averaging, and the rejection of low cor
relation coefficients. Following Gordon [1989], Kd(l) is  a  
function of the absorption a(l,z) and backscattering coeffi
cients bb(l,z), as well as the mean cosine (md(l,z)) with an 
assumed value of 0.8 independent of wavelength and optical 
depth. In the waters sampled, the backscattering from parti
cles was small (less than 4% of the absorption coefficient at 
488 nm) and was not included in this inversion analysis. 
Consistent with the inverse modeling approach of Roesler 



Figure 2. Depth distribution of temperature, salinity, and density as a function of distance measured by 
the REMUS AUV for the Santa Barbara Channel on (a, c, e) 14 September and (b, d, f) 15 September 
2008. The undulating patterns were in a clockwise box pattern (Figure 1b) starting in the southeast corner. 
For 15 September 2008, the box was repeated. 

and Perry [1995], the total absorption coefficient is repre
sented as the sum of the absorption coefficients for the major 
absorbing components of seawater in the visible spectrum 

aðl; zÞ ¼ awðl; zÞ þ aphðl; zÞ þ acmðl;zÞ 

¼ a ðl; zÞ þ aphð522; zÞ⋅~ ð Þ þ acmð412; zÞ w aph l[ ]
⋅ exp -0:011⋅ðl-412Þ ð1Þ 

where aw(l), aph(l,z), and acm(l,z) are the absorption coef
ficients (m-1) for pure seawater [Pope and Fry, 1997], 
phytoplankton, and cDOM, respectively. The parameter 
aph(522,z) is the algal absorption coefficient (m-1) at  
522 nm. The term ãph(l) is the spectrum for a phyto
plankton absorption coefficient normalized to the average 
value of the spectrum over the wavelength interval 400 to 
700 nm, which corresponds to the value at 522 nm 
(dimensionless). The spectrum used is from Ciotti et al. 
[2002] and assumes a weighting factor S〈f〉 based on the cell 
size distribution (0 to 1 scaling with total dominance of small 
cells equaling 1). In order to adapt the Brown et al. [2004] 
methods for the purposes of this experiment, the waters off 
Hawaii were considered dominated by picoplankton 
[Takahashi and Bienfang, 1983], S〈f〉 = 1, and Santa Barbara 
Basin with a mixed community with S〈f〉 = 0.5 [Harding 
et al., 1982]. The cDOM component includes absorption 

due to cDOM and nonalgal particulates (i.e., detritus), 
both of which exhibit exponential decrease in absorp
tion with wavelength. The slope of the exponential decline in 
the absorption coefficient for nonalgal cDOM is also adap
ted to local conditions and set to 0.011 nm-1 [Kostadinov 
et al., 2007; Yamashita and Tanoue, 2009]. The inverse 
model uses a bounded nonlinear least squares method 
[Coleman and Li, 1994, 1996] to simultaneously fit model 
parameters in equation (1), representing the magnitudes of 
the various sources of spectral absorption. Brown et al. 
[2004] found this approach to be robust and not sensi
tive to the magnitude of the initial values within their 
normal range. The maximum bounds for all parameters 
were set such that they never limited the fits, and all 
lower bounds were set to 0. By allowing the inversion 
algorithm to simultaneously fit the parameters, we can 
obtain the individual optical contributions from various 
constituents, subject to the simplifications used in this 
analysis. To summarize the inversion algorithm, once 
values for Kd were obtained, the following sum was 
minimized 

∑ ðKd ðl; z ud - fawð Þ þ aphð522; zÞ ⋅ aaph l ð412; zÞÞ ⋅ a l ð Þ þ acm 
l 

⋅ exp½-0:011⋅ðl - 412Þ]gÞ2 
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Figure 3. Depth distribution of chlorophyll a, CDOM and optical backscatter as a function of distance 
measured by the REMUS AUV for the Santa Barbara Channel on (a, c, e) 14 September and (b, d, f) 
15 September 2008. Measurement patterns are identical to those in Figure 2. 

by allowing aph(522,z) and acm(412,z) to vary and setting 
ūd to 0.8. An interior-reflective Newton method was used 
in the least squares minimization algorithm [Coleman and 
Li, 1994, 1996]. 
[10] Following Wijesekera et al. [2005], data taken from 

the horizontal portions of the AUV deployments in both 
locations were used to evaluate the effect of surface waves 
on the irradiance distribution in the surface waters. As 
the vehicle was traveling a mean speed of 1.8 m s-1 and 
the sampling rate of the irradiance sensors were 8 Hz, the 
effective intervals of the observations were 0.23 m. The 
linear distance along each depth was approximately 2 km. 
As the irradiance field is logarithmically dependent on 
depth, it was critical that the AUV maintain level flight at 
the predetermined depths. In this study, the shallowest 
depths of 1.5 m and 2 m for Santa Barbara Channel and 
Hawaii, respectively, presented the largest depth standard 
deviation of 0.1 m. Below 5 m in both sites, the standard 
deviation for the AUV depth at level flight was <0.06 m. 
Calculation of the horizontal wave number spectra were 
done on Ed(490) for each horizontal depth specified above. 
The portions of each mission where the REMUS traveled at 
constant depths and heading, first parallel then perpendicu
lar to the local ocean wave direction, were saved as separate 

time series. The 490 nm downwelling irradiance measured 
within each portion was selected and any missing mea
surements (e.g., when the REMUS paused along track to 
surface) were replaced with the mean of that time series. 
Each time series vector was then segmented into over
lapping windows, of width dictated by the nearest power of 
two that did not exceed the length of the vector (e.g., if a 
time series had 1000 measured values, the nearest power 
of 2 is 29 = 512; so the first segment would have values 
1–512 and the second segment would contain values 
489–1000). These segments were then passed separately into 
the MATLAB function psd.m, which calculated an estimate 
of the power spectral density and associated frequencies for 
each using Welch’s averaged periodogram method with a 
Hanning window and linear de-trending [Krauss et al., 
1993]. The mean of the spectra and corresponding frequen
cies across these segments was then calculated. This power 
spectral density estimate for the complete time series 
was smoothed by band-averaging the spectra and their fre
quencies into 64 evenly spaced bins. Dividing the frequen
cies and spectra by the mean speed of the vehicle gave the 
wave number and spectral estimate for the irradiance time 
series. The MATLAB function used to derive the horizontal 
wave number spectra is fully commented and available 

 



Figure 4. Depth distribution of temperature, salinity, and density as a function of distance measured by 
the REMUS AUV off the Hawaiian Islands (Figure 1c) on (a, c, e) 5 September and (b, d, f) 6 September 
2009. The undulating patterns were in a “U” pattern starting on the northern edge. 

online at (ftp://marine.calpoly.edu/Zelenke/WavenumberSpectra/ 
TimeSeries2WavenumberPSD). 

3. Results and Discussion 

3.1. Environmental Variability 

[11] During the AUV deployments in Santa Barbara 
Channel in September 2008, the water column was charac
terized by sharp thermoclines ranging from 10 to 20 m depth 
(Figure 2). The water column was 2°C warmer during 
14 September than 15 September, with less variability in 
the depth range of the thermocline in the sampling box 
(Figures 2a and 2b). There was a deep excursion of the 
thermocline over a distance of 2 km on 15 September 
2009 suggesting a possible internal wave train. Previous 
missions in the Santa Barbara Channel have shown exten
sive advection [Otero and Siegel, 2004], circulation [Dong 
et al., 2009], and internal wave dynamics [Cudaback and 
McPhee-Shaw, 2009] to explain the variability in the tem
perature dynamics. Salinity in the upper 40 m showed 
similar dynamics with some indication of a deeper saline 
intrusion in the first undulation of 15 September 2009 
(Figures 2c and 2d). Lower salinity and higher temperature 
resulted in a lower density in the first deployment compared 
to the second (Figures 2e and 2f). 
[12] Chlorophyll a concentrations were below 1 mg L-1 

distribution was distributed both in the mixed layer and in 

distinct spatial0 patches below the pycnocline both sampling 
days in the Santa Barbara Channel (Figures 3a and 3b). The 
large vertical excursion in the second deployment appears to 
have moved Chl a into the mixed layer (Figure 3b). Colored 
dissolved organic matter increased with depth and was in 
highest concentration below the pycnocline (Figures 3c 
and 3d). Backscatter mimicked the physical data with 
concentrations twice as high in the mixed layer (Figures 3e 
and 3f). 
[13] Physical data from the Hawaii AUV deployments 

again showed large excursions in the thermoclines ranging 
from 40 to 60 m (Figures 4a and 4b). Salinity showed rela
tively large variation (35 to 35.5 psu) over short vertical 
(40 m) and horizontal scales (200 m; Figures 4c and 4d). 
Salinity differences were compensated by differences in 
temperature and resulted in a uniform density gradient 
with depth (Figures 4e and 4f). This density compensation 
has been shown in this region [Rudnick and Ferrari, 1999] 
and is the subject of ongoing work [Shcherbina et al., 2010; 
Smith and Ferrari, 2009]. 
[14] Chlorophyll a and cDOM concentrations were an 

order of magnitude less than those measured in Santa 
Barbara Channel and showed a general increasing trend 
with depth (Figure 5). Although concentrations were low, 
the vertical patterns at depth were consistent with the den
sity gradients. The general decrease in Chl a is likely due to 
low values of Kd(l) in these tropical waters and high 

ftp://marine.calpoly.edu/Zelenke/WavenumberSpectra


Figure 5. Depth distribution of chlorophyll a, CDOM and optical backscatter as a function of distance 
measured by the REMUS AUV off the Hawaiian Islands (Figure 1c) on (a, c, e) 5 September and 
(b, d, f) 6 September 2009. Measurement patterns are identical to those in Figure 4. 

quenching of fluorescence, known to decrease Chl a con- 3.2. Underwater Light Field 
centrations by up to 80% during the midday hours [15] The spectral downwelling attenuation in the Santa 
[Sackmann et al., 2008]. Backscatter was highest along the Barbara Channel showed high attenuation in the blue portion 
maximum pycnocline gradient in the upper 95 m, consistent of the spectrum, consistent with a higher proportion of 
with biogenic particles [Nencioli et al., 2010]. 

Figure 6. Mean spectral attenuation for data collected from the Santa Barbara Channel and the sampling 
station off the island of Hawaii. Means are shown with standard errors with wavelengths slightly offset for 
clarity. 
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Figure 7. Downwelling attenuation coefficient at 490 nm, Kd(490), as a function of depth (m) derived 
from AUV downwelling irradiance, Ed(l), measurements for Santa Barbara Channel on (a) 14 September 
and (b) 15 September 2008 and off the Hawaiian Islands on (c) 5 September and (d) 6 September 2009. 

cDOM relative to phytoplankton (Figure 6). Even though 
measured attenuation by the AC-S showed values off Hawaii 
an order of magnitude smaller than Santa Barbara Channel 
(data not shown), the values of Kd(l) derived from the AUV 
deployments in Hawaii were generally higher, with a spec
tral shape consistent with waters with a higher proportion of 
phytoplankton [Nencioli et al., 2010]. Even though the depth 
of the Chl a maximum was likely deeper ( 100 to 120 m) 
than the diving depth of the AUV [Sakamoto et al., 2004; 
Nencioli et al., 2010], the concentrations of Chl a were less 
than those in the Santa Barbara Channel and would not have 
influenced the Kd(l) values to the degree found in Figure 6. 
This inconsistency will be addressed below. Examination of 
the Kd(490) with depth in Santa Barbara Channel shows a 
near uniform distribution in the surface waters to 20 m and 
then decreasing with depth with higher variability in the 
second deployment (Figures 7a and 7b). As mentioned 
above, Kd(490) off Hawaii was higher with larger variability 
and showing an exponential relationship with depth 
(Figures 7c and 7d). This high variability suggests that sur
face processes were influencing this quantity. We attempted 
to decrease this variability by doubling the data window of 
the linear regression of the log transformed Ed(l,z) data (see 
section 2), but this did not significantly increase the number 
of points used in the analysis. 

3.3. Derived Inherent Optical Properties 

[16] From the inversion of Kd(l), we were able to derive 
estimates of aph(l) and acm(l). For deployments in Santa 

Barbara Channel, there was apparent vertical structure in 
aph(490), with a slight increase from the surface to 15 m with 
a mean of 0.07 m-1 (Figure 8). Below this depth, there 
was a near linear decrease with depth of 0.001 m-1 m -1. 
Measured aph(490) from the AC-S cast taken within 3 h of 
the first deployment showed both good quantitative and 
qualitative agreement with both AUV deployments with 
peak absorption about 0.09 m-1 (Figure 8). The derived 
acm(l) for both the Santa Barbara Channel showed little to 
no vertical structure, with a mean of 0.005 m-1. As the 
variance in the retrieved values for Kd(l) in Hawaii was 
larger than Santa Barbara Channel and also showed no ver
tical structure, inversion of Kd(l) yielded no reasonable 
derived values of aph(l) or  acm(l). To further evaluate 
whether the high variability in the Kd(l) profiles resulted 
from the AUV itself (i.e., speed, dive angle), we examined 
profiles made from a free-falling optical cage deployed from 
a small boat away from the R/V Kilo Moana. These profiles 
revealed similar variance in Kd(l) throughout the water 
column increasing toward the surface (data not shown), 
indicating this phenomena was platform independent and 
resulted from the surface Ed(l) and wave conditions. 
[17] Derived estimates of aph(490) from the Santa Barbara 

Channel were further compared to the on board measure
ments of Chl a as seen in Figure 3 (Figure 9). The rela
tionships show a linear agreement between the two 
quantities as seen in the Kd(490) (Figure 8) there was less 
variability in the first deployment (Figure 9a). Given the 
known influence of fluorescence quenching with depth, the 
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Figure 8. Derived phytoplankton absorption, aph, at  
490 nm as a function of depth for Santa Barbara Channel 
on (a) 14 September and (b) 15 September 2008. Overlaid 
(black line) is the attenuation measured by the shipboard 
AC-S on 14 September 2008. 

values were color coded to reveal the decrease in the mea
sured Chl a florescence. Additionally, there was an increase 
in the derived aph(490) at the surface. This again suggests 
the influence of surface Ed(l) and wave conditions on Kd(l) 
and the subsequent inversion approach. 

3.4. Surface Waves and Internal Light Field 

[18] Data from the AUV deployments from both locations 
showed the influence of surface conditions on deriving 
IOPs. In order to better evaluate this influence, the variance 
of Ed(490) from the level flight portions of the four AUV 
missions (see Figures 2 and 4). There was a significant dif
ference in the variance of Ed(490) between locations and 
with depth (Figure 10). Highest variance was at the surface 
in both locations with a depth dependent order of magni
tudes higher variance off Hawaii. This is consistent with 
high frequency changes in Ed(l) due to clouds, increased 
wave focusing effects at the surface from the wavefield 
[Zaneveld et al., 2001; Darecki et al., 2011], and lower 
attenuation and larger influence of these effects in Hawaii. 
This measure also captured the increased variance between 
deployments in Santa Barbara Channel and the resulting 
influence on the inversion estimates (Figure 10). Data from 
J. C. Zappa et al. (An overview of sea state conditions and 
air-sea fluxes during RaDyO, submitted to Journal of 
Geophysical Research, 2011) showed wave heights in Santa 
Barbara Channel during the deployments were 1 m with 

wind speeds of 5 m  s-1. Data off Hawaii for the AUV 
deployments showed both the wave heights and wind speeds 
were double that of Santa Barbara Channel, explaining some 
of the increased variance in Ed(490) between locations. The 
variance difference between deployments in the Santa 
Barbara Channel could be a result of more cloud cover 
and diffuse light source during the first deployment rel
ative to the second (Zappa et al., submitted manuscript, 
2011). 
[19] Further analysis of the influence of surface Ed(l) and 

wave focusing was conducted by evaluating the horizontal 
wave number spectrum of Ed(490) for all four AUV 
deployments following Wijesekera et al. [2005]. Figure 11 
shows horizontal wave number spectra for the data col
lected at level flight depths. For the Santa Barbara Channel 
deployments, the shape of the spectra and the offset with 
depth suggest there was focusing of solar rays by surface 
wave geometry at all scales measured. As was done by 
Wijesekera et al. [2005], we examined the possibility that 
the motion of the vehicle was responsible for these differ
ences in Ed(490), but found negligible impacts. For the 
Hawaii deployments, the spectrum is nearly constant in 
amplitude with depth for wave numbers <0.2 cpm 
(Figures 11c and 11d). The spectrum showed the smallest 

Figure 9. Relationship between derived phytoplankton 
absorption, aph, at 490 nm and measured chlorophyll a 
fluorescence (mg L-1) for Santa Barbara Channel on 
(a) 14 September and (b) 15 September 2008. Overlaid 
color represents the depths at which the measurements were 
made. 
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Figure 10. Variance in downwelling irradiance, Ed(l), measurements as a function of depth (m) made 
from the AUV for Santa Barbara Channel on 14 September and 15 September 2008 and off the Hawaiian 
Islands on 5 September and 6 September 2009. 

amplitudes in Ed(490) variance were depth dependent at the 
highest wave numbers. According to Zaneveld et al. [2001], 
the focal point of wave focusing can be approximated by the 
ratio of the wave amplitude to the wavelength. Given that 
the depth of influence was near the maximum operating 
depth of the AUV ( 80 m) with seas of 5 m, the maximum 
surface wavelength was on the order of 100 m. These results 
indicate that in fact the surface wavefield and wave focusing 
disproportionally influenced Ed(490) across scales <1 m and 
at all depths, thus influencing the estimations of Kd(490) and 
the derivations of aph(l) or  acm(l). It should be noted that in 
Hawaii, had the vehicle been rated deeper than 100 m, that 
effective retrieval of Kd(490) on these small scales for depths 
near the Chl a max depth ( 120 m) would have been likely. 

4. Conclusion 

[20] The use of AUVs to evaluate optical properties of the 
water column has been demonstrated by a number of 
investigators [see Dickey et al., 2008]. These have included 
bio-optical proxy measures (i.e., Chl), measures of apparent 
optical properties [Brown et al., 2004; Wijesekera et al., 
2005], and direct measures of IOPs [Cunningham et al., 
2003; Wijesekera et al., 2005]. While these approaches 
have shown the value of AUVs in providing these measures 
with unprecedented resolution, it is important to evaluate the 
application of these techniques. The Santa Barbara Channel 
and waters off of Hawaii represented waters that are 
sequentially more optically transparent than the waters in the 

Mid-Atlantic Bight of Brown et al. [2004] and therefore 
provided reasonable locations for evaluation. In applying 
techniques by Brown et al. [2004], we found that this 
approach was marginally successful in the Santa Barbara 
Channel and not successful in deriving optical constituents 
in the near surface waters off of Hawaii. While the model 
approach remains valid, its application requires an assump
tion of a homogenous uniform light field for the retrieval of 
robust values for Kd(l) and subsequent inversion for deriv
ing optical constituents. The Kd(l) values of Brown et al. 
[2004] were double those of this study for Santa Barbara 
Channel at 555 nm and fivefold larger at 412 nm. This along 
with uniform cloud cover and quiescent surface conditions 
provided ideal uniform light field condition to construct 
inversion approaches for the near surface. While this was an 
important exercise to move toward synoptic evaluation of 
the sub-surface spatial variability in optical constituents, the 
application has limited scope which is scaled with the 
combination of surface conditions and the water attenuation 
at a given locale. The optical conditions in the Santa Barbara 
Channel and off Hawaii demonstrated the influence of water 
attenuation, vehicle performance, variability in surface Ed(l) 
due to broken cloud cover, and wave focusing conditions on 
the ability to use inversion approaches of apparent optical 
properties over small scales to derive optical constituents in 
near surface waters. As the assumption of an uniform light 
field for deriving Kd(l) is not often met in both coastal and 
open ocean conditions, caution must be used in universally 
applying this method to other platforms such as Argo floats, 



Figure 11. Horizontal wave number spectra of downwelling irradiance at 490 nm, Ed(490), as a function 
of depth (m) following Wijesekera et al. [2005] for Santa Barbara Channel on (a) 14 September and 
(b) 15 September 2008 and off the Hawaiian Islands on (c) 5 September and (d) 6 September 2009. 

profilers, gliders, and moorings as suggested by Brown et al. 
[2004]. It is important to note that while this study was 
focused on deriving optical constituents over small scales, 
the application of this method integrated over larger time 
and space scales on a variety of platforms may very well be 
applicable. As AUVs continue to develop and improve 
vehicle onboard power availability and duration, and sensors 
power requirements decrease, using AUVs to measure IOPs 
directly with active optics is an improved long-term strategy 
to address optical variability and biogeochemical processes 
over sub-mesoscales in the ocean. 
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