1,456 research outputs found

    Quenched lattice calculation of the B --> D l nu decay rate

    Full text link
    We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters in the decay rate of the semileptonic decay B --> D l nu. Making use of the step scaling method (SSM), previously introduced to handle two scale problems in lattice QCD, and of flavour twisted boundary conditions we extract G(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations.Comment: 5 pages, 4 figures, accepted for publication on Phys. Lett. B, corrected one typ

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods

    Full text link
    We investigate online algorithms for maximum (weight) independent set on graph classes with bounded inductive independence number like, e.g., interval and disk graphs with applications to, e.g., task scheduling and spectrum allocation. In the online setting, it is assumed that nodes of an unknown graph arrive one by one over time. An online algorithm has to decide whether an arriving node should be included into the independent set. Unfortunately, this natural and practically relevant online problem cannot be studied in a meaningful way within a classical competitive analysis as the competitive ratio on worst-case input sequences is lower bounded by Ω(n)\Omega(n). As a worst-case analysis is pointless, we study online independent set in a stochastic analysis. Instead of focussing on a particular stochastic input model, we present a generic sampling approach that enables us to devise online algorithms achieving performance guarantees for a variety of input models. In particular, our analysis covers stochastic input models like the secretary model, in which an adversarial graph is presented in random order, and the prophet-inequality model, in which a randomly generated graph is presented in adversarial order. Our sampling approach bridges thus between stochastic input models of quite different nature. In addition, we show that our approach can be applied to a practically motivated admission control setting. Our sampling approach yields an online algorithm for maximum independent set with competitive ratio O(ρ2)O(\rho^2) with respect to all of the mentioned stochastic input models. for graph classes with inductive independence number ρ\rho. The approach can be extended towards maximum-weight independent set by losing only a factor of O(logn)O(\log n) in the competitive ratio with nn denoting the (expected) number of nodes
    corecore