4 research outputs found

    Reflectance and fluorescence characteristics of PTFE coated with TPB at visible, UV, and VUV as a function of thickness

    No full text
    Abstract: Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB in air for light of wavelengths of 200 nm, 260 nm, and 450 nm. The results show that TPB-coated PTFE has a reflectance of approximately 92% for thicknesses ranging from 5 mm to 10 mm at 450 nm, with negligible variation as a function of thickness within this range. A cross-check of these results using an argon chamber supports the conclusion that the change in thickness from 5 mm to 10 mm does not affect significantly the light response at 128 nm. Our results indicate that pieces of TPB-coated PTFE thinner than the typical 10 mm can be used in particle physics detectors without compromising the light signal

    Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT

    Full text link
    The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in 136^{136}Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr\'aneo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neutrinoless double beta decay search. The analysis considers the combination of 271.6 days of 136^{136}Xe-enriched data and 208.9 days of 136^{136}Xe-depleted data. A detailed background modeling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50±\pm0.01 kg of 136^{136}Xe-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T1/20ν>5.5×10231.3×1024_{1/2}^{0\nu}>5.5\times10^{23}-1.3\times10^{24} yr range, depending on the method. The presented techniques stand as a proof-of-concept for the searches to be implemented with larger NEXT detectors

    Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT

    No full text
    Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in 136Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterráneo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu- trinoless double beta decay search. The analysis considers the combination of 271.6 days of 136Xe-enriched data and 208.9 days of 136Xe-depleted data. A detailed background modeling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 ± 0.01 kg of 136Xe-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T 1 / 2 0 ν T1/20ν {T}_{1/2}^{0\nu } > 5.5 × 1023 − 1.3 × 1024 yr range, depending on the method. The presented techniques stand as a proof-of-concept for the searches to be implemented with larger NEXT detectors

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore