21,706 research outputs found
Exponential versus linear amplitude decay in damped oscillators
We comment of the widespread belief among some undergraduate students that
the amplitude of any harmonic oscillator in the presence of any type of
friction, decays exponentially in time. To dispel that notion, we compare the
amplitude decay for a harmonic oscillator in the presence of (i) viscous
friction and (ii) dry friction. It is shown that, in the first case, the
amplitude decays exponentially with time while in the second case, it decays
linearly with time.Comment: 3 pages, 1 figure, accepted in Phys. Teac
Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV
A spherical optical model potential (OMP) containing a dispersive term is
used to fit the available experimental database of angular distribution and
total cross section data for n + Al27 covering the energy range 0.1- 250 MeV
using relativistic kinematics and a relativistic extension of the Schroedinger
equation. A dispersive OMP with parameters that show a smooth energy dependence
and energy independent geometry are determined from fits to the entire data
set. A very good overall agreement between experimental data and predictions is
achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive
volume potential allows to achieve an excellent agreement up to 250 MeV.Comment: 13 figures (11 eps and 2 jpg), 3 table
Two-color discrete localized modes and resonant scattering in arrays of nonlinear quadratic optical waveguides
We analyze the properties and stability of two-color discrete localized modes
in arrays of channel waveguides where tunable quadratic nonlinearity is
introduced as a nonlinear defect by periodic poling of a single waveguide in
the array. We show that, depending on the value of the phase mismatch and the
input power, such two-color defect modes can be realized in three different
localized states. We also study resonant light scattering in the arrays with
the defect waveguide.Comment: 10 pages, 3 figures, published in PR
Controlled localization of interacting bosons in a disordered optical lattice
We show that tunneling and localization properties of interacting ultracold
atoms in an optical lattice can be controlled by adiabatically turning on a
fast oscillatory force even in the presence of disorder. Our calculations are
based on the exact solution of the time-dependent Schroedinger equation, using
the Floquet formalism. Implications of our findings for larger systems and the
possibility of controlling the phase diagram of disordered-interacting bosonic
systems are discussed.Comment: 7 pages 7 fig
Bakhtiari, Leskinen and Torma Reply
This is a Reply to: Comment on "Spectral Signatures of the
Fulde-Ferrell-Larkin-Ovchinnikov Order Parameter in One-Dimensional Optical
Lattices" R. A. Molina J. Dukelksy, and P. Schmitteckert, Phys. Rev. Lett. 102,
168901 (2009)Comment: 1 page, published versio
- …