14,595 research outputs found

    Late time tails of the massive vector field in a black hole background

    Full text link
    We investigate the late-time behavior of the massive vector field in the background of the Schwarzschild and Schwarzschild-de Sitter black holes. For Schwarzschild black hole, at intermediately late times the massive vector field is represented by three functions with different decay law Ψ0t(+3/2)sinmt\Psi_{0} \sim t^{-(\ell + 3/2)} \sin{m t}, Ψ1t(+5/2)sinmt\Psi_{1} \sim t^{-(\ell + 5/2)} \sin{m t}, Ψ2t(+1/2)sinmt\Psi_{2} \sim t^{-(\ell + 1/2)} \sin{m t}, while at asymptotically late times the decay law Ψt5/6sin(mt)\Psi \sim t^{-5/6} \sin{(m t)} is universal, and does not depend on the multipole number \ell. Together with previous study of massive scalar and Dirac fields where the same asymptotically late-time decay law was found, it means, that the asymptotically late-time decay law t5/6sin(mt)\sim t^{-5/6} \sin{(m t)} \emph{does not depend} also \emph{on the spin} of the field under consideration. For Schwarzschild-de Sitter black holes it is observed two different regimes in the late-time decay of perturbations: non-oscillatory exponential damping for small values of mm and oscillatory quasinormal mode decay for high enough mm. Numerical and analytical results are found for these quasinormal frequencies.Comment: one author and new material are adde

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    Scalar field evolution in Gauss-Bonnet black holes

    Full text link
    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant Λ\Lambda and the Gauss-Bonnet coupling α\alpha is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on α\alpha, even though the black hole metric contains α\alpha as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.Comment: 10 pages, to be published in Phys. Rev.

    Effect of nonlinearity on the dynamics of a particle in dc field-induced systems

    Get PDF
    Dynamics of a particle in a perfect chain with one nonlinear impurity and in a perfect nonlinear chain under the action of dc field is studied numerically. The nonlinearity appears due to the coupling of the electronic motion to optical oscillators which are treated in adiabatic approximation. We study for both the low and high values of field strength. Three different range of nonlinearity is obtained where the dynamics is different. In low and intermediate range of nonlinearity, it reduces the localization. In fact in the intermediate range subdiffusive behavior in the perfect nonlinear chain is obtained for a long time. In all the cases a critical value of nonlinear strength exists where self-trapping transition takes place. This critical value depends on the system and the field strength. Beyond the self-trapping transition nonlinearity enhances the localization.Comment: 9 pages, Revtex, 6 ps figures include

    Quasinormal modes of black holes in anti-de Sitter space: a numerical study of the eikonal limit

    Full text link
    Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay timescale of the perturbations. We confirm all the main qualitative features of these slowly-damped modes as predicted by Festuccia and Liu (arXiv:0811.1033) for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the QNM frequencies on the horizon radius of the black hole (brane) and the angular momentum (wavenumber) of vector- and scalar-type gravitational perturbations.Comment: 5 pages, RevTex4. v2: References added and minor typos corrected. Published versio

    Time evolution of models described by one-dimensional discrete nonlinear Schr\"odinger equation

    Full text link
    The dynamics of models described by a one-dimensional discrete nonlinear Schr\"odinger equation is studied. The nonlinearity in these models appears due to the coupling of the electronic motion to optical oscillators which are treated in adiabatic approximation. First, various sizes of nonlinear cluster embedded in an infinite linear chain are considered. The initial excitation is applied either at the end-site or at the middle-site of the cluster. In both the cases we obtain two kinds of transition: (i) a cluster-trapping transition and (ii) a self-trapping transition. The dynamics of the quasiparticle with the end-site initial excitation are found to exhibit, (i) a sharp self-trapping transition, (ii) an amplitude-transition in the site-probabilities and (iii) propagating soliton-like waves in large clusters. Ballistic propagation is observed in random nonlinear systems. The effect of nonlinear impurities on the superdiffusive behavior of random-dimer model is also studied.Comment: 16 pages, REVTEX, 9 figures available upon request, To appear in Physical Review

    Stationary Localized States Due to a Nonlinear Dimeric Impurity Embedded in a Perfect 1-D Chain

    Full text link
    The formation of Stationary Localized states due to a nonlinear dimeric impurity embedded in a perfect 1-d chain is studied here using the appropriate Discrete Nonlinear Schro¨\ddot{o}dinger Equation. Furthermore, the nonlinearity has the form, χCσ\chi |C|^\sigma where CC is the complex amplitude. A proper ansatz for the Localized state is introduced in the appropriate Hamiltonian of the system to obtain the reduced effective Hamiltonian. The Hamiltonian contains a parameter, β=ϕ1/ϕ0\beta = \phi_1/\phi_0 which is the ratio of stationary amplitudes at impurity sites. Relevant equations for Localized states are obtained from the fixed point of the reduced dynamical system. β|\beta| = 1 is always a permissible solution. We also find solutions for which β1|\beta| \ne 1. Complete phase diagram in the (χ,σ)(\chi, \sigma) plane comprising of both cases is discussed. Several critical lines separating various regions are found. Maximum number of Localized states is found to be six. Furthermore, the phase diagram continuously extrapolates from one region to the other. The importance of our results in relation to solitonic solutions in a fully nonlinear system is discussed.Comment: Seven figures are available on reques

    Changes of the topological charge of vortices

    Full text link
    We consider changes of the topological charge of vortices in quantum mechanics by investigating analytical examples where the creation or annihilation of vortices occurs. In classical hydrodynamics of non-viscous fluids the Helmholtz-Kelvin theorem ensures that the velocity field circulation is conserved. We discuss applicability of the theorem in the hydrodynamical formulation of quantum mechanics showing that the assumptions of the theorem may be broken in quantum evolution of the wavefunction leading to a change of the topological charge.Comment: 5 pages, 2 figures, version accepted for publication in J. Phys.
    corecore