14 research outputs found

    Reverse Dot Blot Assay (Insertion Site Typing) for Precise Detection of Sites of IS6110 Insertion in the Mycobacterium tuberculosis Genome

    No full text
    We have developed an amplification-based reverse dot blot assay for the detection of specific sites of insertion of the Mycobacterium tuberculosis insertion sequence IS6110. In this assay, a set of biotin-labeled amplicons representing the various copies of IS6110 and their flanking sequences is generated by linker-mediated PCR. The amplicons are then hybridized to immobilized oligonucleotide probes that are specific for known IS6110 insertion sites. The method was evaluated using an array of oligonucleotide probes corresponding to IS6110 insertion sites from M. tuberculosis strains CDC1551, Erdman, and H37Rv, and multidrug-resistant strain W. A set of 72 DNA samples from 60 M. tuberculosis clinical isolates was analyzed for the presence or absence of these insertion sites, and the assay was found to be highly reproducible. This method of identifying insertion sites has been named “insite” and can be used for the genotyping of M. tuberculosis complex strains based on IS6110 insertion site profiles

    Lipopolysaccharide Is Transferred from High-Density to Low-Density Lipoproteins by Lipopolysaccharide-Binding Protein and Phospholipid Transfer Protein

    No full text
    Lipopolysaccharide (LPS), the major outer membrane component of gram-negative bacteria, is a potent endotoxin that triggers cytokine-mediated systemic inflammatory responses in the host. Plasma lipoproteins are capable of LPS sequestration, thereby attenuating the host response to infection, but ensuing dyslipidemia severely compromises this host defense mechanism. We have recently reported that Escherichia coli J5 and Re595 LPS chemotypes that contain relatively short O-antigen polysaccharide side chains are efficiently redistributed from high-density lipoproteins (HDL) to other lipoprotein subclasses in normal human whole blood (ex vivo). In this study, we examined the role of the acute-phase proteins LPS-binding protein (LBP) and phospholipid transfer protein (PLTP) in this process. By the use of isolated HDL containing fluorescent J5 LPS, the redistribution of endotoxin among the major lipoprotein subclasses in a model system was determined by gel permeation chromatography. The kinetics of LPS and lipid particle interactions were determined by using Biacore analysis. LBP and PLTP were found to transfer LPS from HDL predominantly to low-density lipoproteins (LDL), in a time- and dose-dependent manner, to induce remodeling of HDL into two subpopulations as a consequence of the LPS transfer and to enhance the steady-state association of LDL with HDL in a dose-dependent fashion. The presence of LPS on HDL further enhanced LBP-dependent interactions of LDL with HDL and increased the stability of the HDL-LDL complexes. We postulate that HDL remodeling induced by LBP- and PLTP-mediated LPS transfer may contribute to the plasma lipoprotein dyslipidemia characteristic of the acute-phase response to infection

    Sequence Analysis of the Direct Repeat Region in Mycobacterium bovis

    Get PDF
    Spoligotyping is a major tool for molecular typing of Mycobacterium bovis. This technique is based on the polymorphism of spacers that separate direct repeats (DRs) in the M. tuberculosis complex DR region. Numerous M. bovis strains show a lack of several spacers which appears as a gap in the spoligotyping pattern. To determine whether these gaps contain alternative spacers not included in the spoligotyping membrane, PCRs using primers that hybridize to the spacers adjacent to the gaps were performed. Comparing the sizes of products obtained by PCR with those deduced from spoligotyping patterns, fragments were selected and sequenced to look for alternative spacers. Upon analysis of the sequences, five alternative spacers were detected, although deletions of spacers are mainly responsible for the observed gaps. The alternative spacers, which are more frequent in M. bovis than in M. tuberculosis, may contribute to increased M. bovis differentiation

    Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease

    No full text
    Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81+/-0.35 versus 1.73+/-0.35 mm in noncarriers, P:=0.001) and diffuse atherosclerosis (mean segment diameter 2.77+/-0.37 versus 2.70+/-0.37 mm, P:=0.005), and fewer coronary events (50% versus 59%, P:=0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42+/-0.49 versus 1.84+/-0.77 mmol/L, P:=0.001) and a trend toward increased HDL-C (0.91+/-0.22 versus 0.88+/-0.20 mmol/L, P:=0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CA

    Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease

    No full text
    BACKGROUND: Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. METHODS AND RESULTS: We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81+/-0.35 versus 1.73+/-0.35 mm in noncarriers, P:=0.001) and diffuse atherosclerosis (mean segment diameter 2.77+/-0.37 versus 2.70+/-0.37 mm, P:=0.005), and fewer coronary events (50% versus 59%, P:=0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42+/-0.49 versus 1.84+/-0.77 mmol/L, P:=0.001) and a trend toward increased HDL-C (0.91+/-0.22 versus 0.88+/-0.20 mmol/L, P:=0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. CONCLUSIONS: These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CAD
    corecore