7 research outputs found

    Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells

    Get PDF
    Background: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. Methods: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. Results: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. Conclusions: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Natuurtoets Delflandse kust : Achtergrondrapportage

    No full text
    In het kader van de Milieueffectrapportage versterking Delflandse Kust is een planstudie verricht naar effecten op natuurwaarden bij uitvoering van alternatieven voor de versterking. Integraal onderdeel is de inpassing van de duincompensatie opgave in het kader van de aanleg van de Tweede Maasvlakte, hierna te noemen duincompensatie PMR. De duincompensatie PMR is weliswaar op zichzelf geen m.e.r.- plichtige activiteit, maar er is een natuurtoets nodig voor het uitvoeren van handelingen in bestaand beschermd natuurgebied, dat in zijn geheel onder het aanwijzingsbesluit Vogel- en Habitatrichtlijn gebieden valt. Er zal sprake zijn van de tijdelijke verstoring of verontrusting van flora en fauna

    Brody Disease, an Early-Onset Myopathy With Delayed Relaxation and Abnormal Gait:A Case Series of 9 Children

    No full text
    Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1. To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.</p

    Brody Disease, an Early-Onset Myopathy With Delayed Relaxation and Abnormal Gait:A Case Series of 9 Children

    No full text
    Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1. To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.</p

    Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells.

    Get PDF
    BACKGROUND: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells
    corecore