15 research outputs found
Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis
Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic
variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary
arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes.
Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial
hypertension. These GWAS used data from four international case-control studies across 11744 individuals with
European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and
the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching
genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants
at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and
tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses.
Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10–
¹⁵) and a second locus in
HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71],
p=7·65×10–
²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus
had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48],
p=1·69×10–
¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene
regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined
haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The
HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in
patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI
12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity.
Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in
HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more
common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed
to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA
typing or rs2856830 genotyping improves risk stratification in clinical practice or trials.
Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA,
ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and
RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR
Germline selection shapes human mitochondrial DNA diversity.
Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.NIHR, Wellcome Trust, MRC, Genomics Englan
GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility
A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
BackgroundGenomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data.MethodsHere, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon–intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon–intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies.ResultsWe show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed.ConclusionsOverall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases
A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Abstract Background Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data. Methods Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon–intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon–intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies. Results We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed. Conclusions Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases.</span
A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project.
Funder: Wessex Medical ResearchFunder: Health Education EnglandFunder: Rosetrees TrustBACKGROUND: Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data. METHODS: Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon-intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon-intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies. RESULTS: We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed. CONCLUSIONS: Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases
Additional file 2 of A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Additional file 2. Table S1. Prioritised variants
Additional file 4 of A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Additional file 4. Table S3. Experimentally validated branchpoints
Additional file 3 of A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
Additional file 3. Table S2. Candidate variants