4 research outputs found

    Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS

    No full text
    Background: Indirect indices for measuring impaired ventilation, such as the estimated dead space fraction and the ventilatory ratio, have been shown to be independently associated with an increased risk of mortality. This study aimed to compare various methods for dead space estimation and the ventilatory ratio in patients with acute respiratory distress syndrome (ARDS) and to determine their independent values for predicting death at day 30. The present study is a post hoc analysis of a prospective observational cohort study of ICUs of two tertiary care hospitals in the Netherlands. Results: Individual patient data from 940 ARDS patients were analyzed. Estimated dead space fraction and the ventilatory ratio at days 1 and 2 were significantly higher among non-survivors (p < 0.01). Dead space fraction calculation using the estimate from physiological variables [V/V] and the ventilatory ratio at day 2 showed independent association with mortality at 30 days (odds ratio 1.28 [95% CI 1.02-1.61], p < 0.03 and 1.20 [95% CI, 1.01-1.40], p < 0.03, respectively); whereas, the Harris-Benedict [V/V] and Penn State [V/V] estimations were not associated with mortality. The predicted validity of the estimated dead space fraction and the ventilatory ratio improved the baseline model based on PEEP, PaO/FiO, driving pressure and compliance of the respiratory system at day 2 (AUROCC 0.72 vs. 0.69, p < 0.05). Conclusions: Estimated methods for dead space calculation and the ventilatory ratio during the early course of ARDS are associated with mortality at day 30 and add statistically significant but limited improvement in the predictive accuracy to indices of oxygenation and respiratory system mechanics at the second day of mechanical ventilation

    Iron metabolism in critically ill patients developing anemia of inflammation: a case control study

    No full text
    Abstract Background Anemia occurring as a result of inflammatory processes (anemia of inflammation, AI) has a high prevalence in critically ill patients. Knowledge on changes in iron metabolism during the course of AI is limited, hampering the development of strategies to counteract AI. This case control study aimed to investigate iron metabolism during the development of AI in critically ill patients. Methods Iron metabolism in 30 patients who developed AI during ICU stay was compared with 30 septic patients with a high Hb and 30 non-septic patients with a high Hb. Patients were matched on age and sex. Longitudinally collected plasma samples were analyzed for levels of parameters of iron metabolism. A linear mixed model was used to assess the predictive values of the parameters. Results In patients with AI, levels of iron, transferrin and transferrin saturation showed an early decrease compared to controls with a high Hb, already prior to the development of anemia. Ferritin, hepcidin and IL-6 levels were increased in AI compared to controls. During AI development, erythroferrone decreased. Differences in iron metabolism between groups were not influenced by APACHE IV score. Conclusions The results show that in critically ill patients with AI, iron metabolism is already altered prior to the development of anemia. Levels of iron regulators in AI differ from septic controls with a high Hb, irrespective of disease severity. AI is characterized by high levels of hepcidin, ferritin and IL-6 and low levels of iron, transferrin and erythroferrone

    The leukocyte non-coding RNA landscape in critically ill patients with sepsis

    Get PDF
    The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte 'regulome' that can facilitate prioritization of future functional studies

    Iron metabolism in critically ill patients developing anemia of inflammation : a case control study

    No full text
    Background: Anemia occurring as a result of inflammatory processes (anemia of inflammation, AI) has a high prevalence in critically ill patients. Knowledge on changes in iron metabolism during the course of AI is limited, hampering the development of strategies to counteract AI. This case control study aimed to investigate iron metabolism during the development of AI in critically ill patients. Methods: Iron metabolism in 30 patients who developed AI during ICU stay was compared with 30 septic patients with a high Hb and 30 non-septic patients with a high Hb. Patients were matched on age and sex. Longitudinally collected plasma samples were analyzed for levels of parameters of iron metabolism. A linear mixed model was used to assess the predictive values of the parameters. Results: In patients with AI, levels of iron, transferrin and transferrin saturation showed an early decrease compared to controls with a high Hb, already prior to the development of anemia. Ferritin, hepcidin and IL-6 levels were increased in AI compared to controls. During AI development, erythroferrone decreased. Differences in iron metabolism between groups were not influenced by APACHE IV score. Conclusions: The results show that in critically ill patients with AI, iron metabolism is already altered prior to the development of anemia. Levels of iron regulators in AI differ from septic controls with a high Hb, irrespective of disease severity. AI is characterized by high levels of hepcidin, ferritin and IL-6 and low levels of iron, transferrin and erythroferrone
    corecore