11 research outputs found
Terahertz Security Image Quality Assessment by No-reference Model Observers
To provide the possibility of developing objective image quality assessment
(IQA) algorithms for THz security images, we constructed the THz security image
database (THSID) including a total of 181 THz security images with the
resolution of 127*380. The main distortion types in THz security images were
first analyzed for the design of subjective evaluation criteria to acquire the
mean opinion scores. Subsequently, the existing no-reference IQA algorithms,
which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and
BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM,
CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security
image quality. The statistical results demonstrated the superiority of Fish_bb
over the other testing IQA approaches for assessing the THz image quality with
PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The
linear regression analysis and Bland-Altman plot further verified that the
Fish__bb could substitute for the subjective IQA. Nonetheless, for the
classification of THz security images, we tended to use S3 as a criterion for
ranking THz security image grades because of the relatively low false positive
rate in classifying bad THz image quality into acceptable category (24.69%).
Interestingly, due to the specific property of THz image, the average pixel
intensity gave the best performance than the above complicated IQA algorithms,
with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This
study will help the users such as researchers or security staffs to obtain the
THz security images of good quality. Currently, our research group is
attempting to make this research more comprehensive.Comment: 13 pages, 8 figures, 4 table
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
A New View on the Application of Gold Nanoparticles in Cancer Therapy
In biomedical research and the practice of cancer therapy, gold nanoparticles
have been used to visualize malignant tumors, as the heated bodies for
hyperthermia of cancer cells, as drug carriers to deliver drugs to a cancer
cell, but, to the best of our knowledge, they have not yet been used
consciously as the sources of terahertz (THz) radiation delivered to a cancer
cell that contributes to the inhibition of cell activity. It is predicted here
that gold nanoparticles less than 8 nm in size are sources of spontaneous THz
radiation, and the possibility of their application in oncology is due to the
known effects of THz radiation on the cells of living organisms. There are
indications that nanoparticles with a size comparable to the width of the major
groove of the DNA molecule will be the most effective. Another effect that has
not yet been taken into account in biomedical studies using gold nanoparticles
is that of local electric fields due to the contact potential difference above
edges and vertices of gold nanoclusters. The prerequisites and possibilities
for searching for the manifestations of these two effects when gold
nanoparticles are introduced into living cells of organisms are considered.Comment: 29 pages, in Russian, 15 figure
ALICE: The Ultraviolet Imaging Spectrograph aboard the New Horizons Pluto-Kuiper Belt Mission
The New Horizons ALICE instrument is a lightweight (4.4 kg), low-power (4.4
Watt) imaging spectrograph aboard the New Horizons mission to Pluto/Charon and
the Kuiper Belt. Its primary job is to determine the relative abundances of
various species in Pluto's atmosphere. ALICE will also be used to search for an
atmosphere around Pluto's moon, Charon, as well as the Kuiper Belt Objects
(KBOs) that New Horizons hopes to fly by after Pluto-Charon, and it will make
UV surface reflectivity measurements of all of these bodies as well. The
instrument incorporates an off-axis telescope feeding a Rowland-circle
spectrograph with a 520-1870 angstroms spectral passband, a spectral point
spread function of 3-6 angstroms FWHM, and an instantaneous spatial
field-of-view that is 6 degrees long. Different input apertures that feed the
telescope allow for both airglow and solar occultation observations during the
mission. The focal plane detector is an imaging microchannel plate (MCP) double
delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI)
and a focal surface that matches the instrument's 15-cm diameter
Rowland-circle. In what follows, we describe the instrument in greater detail,
including descriptions of its ground calibration and initial in flight
performance.Comment: 24 pages, 29 figures, 2 tables; To appear in a special volume of
Space Science Reviews on the New Horizons missio
Terahertz-to-infrared converter based on the polyvinylchloride matrix with embedded gold nanoparticles
Abstract
Prospects for the development of devices for visualizing terahertz (THz) radiation sources can be associated with the use of the results of old studies (1965–1978) on the absorption of THz radiation by metal nanoparticles. This “renaissance” demonstrates that metallic nanoparticles can be used as nanotransducers of invisible THz radiation to infrared (IR) radiation detectable by a commercial IR camera. The investigated THz-to-IR converters are matrices that are transparent both in the THz radiation range to be visualized and in the operating range of the IR camera; matrices contain embedded metal nanoparticles. The latter, when irradiated with THz rays, convert the energy of THz photons into heat and become nanosources of IR radiation for the IR camera. In metal nanoparticles, the mechanisms of absorption of THz radiation and its conversion into heat are realized through dissipation of the energy of THz photons due to multiple scattering of electrons, as well as because of excitation of two types of phonons (transverse and longitudinal ones). The conversion of THz energy into the energy of transverse phonons occurs directly, while dissipation and excitation of longitudinal phonons occurs indirectly, through the excitation of Fermi electrons. Polyvinylchloride (PVC) was chosen as the matrix material, and gold nanoparticles were chosen as nanoparticles-fillers
Terahertz-to-infrared converters for imaging the human skin cancer:challenges and feasibility
Abstract
Purpose: Terahertz (THz) medical imaging is a promising noninvasive technique for monitoring the skin’s conditions, early detection of the human skin cancer, and recovery from burns and wounds. It can be applied for visualization of the healing process directly through clinical dressings and restorative ointments, minimizing the frequency of dressing changes. The THz imaging technique is cost effective, as compared to the magnetic resonance method. Our aim was to develop an approach capable of providing better image resolution than the commercially available THz imaging cameras.
Approach: The terahertz-to-infrared (THz-to-IR) converters can visualize the human skin cancer by converting the latter’s specific contrast patterns recognizable in THz radiation range into IR patterns, detectable by a standard IR imaging camera. At the core of suggested THz-to-IR converters are flat matrices transparent both in the THz range to be visualized and in the operating range of the IR camera, these matrices contain embedded metal nanoparticles (NPs), which, when irradiated with THz rays, convert the energy of THz photons into heat and become nanosources of IR radiation detectable by an IR camera.
Results: The ways of creating the simplest converter, as well as a more complex converter with wider capabilities, are considered. The first converter is a gelatin matrix with gold 8.5-nm diameter NPs, and the second is a polystyrene matrix with 2-nm diameter NPs from copper–nickel MONEL® alloy 404.
Conclusions: An approach with a THz-to-IR converter equipped with an IR camera is promising in that it could provide a better image of oncological pathology than the commercially available THz imaging cameras do
The Ultraviolet Spectrograph on NASA’s Juno Mission
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS