78 research outputs found

    Kinetic study of fermentative biosurfactant production by Lactobacillus strains

    Get PDF
    Screening of biosurfactant-producing ability of four Lactobacillus strains was performed, being shown that for all the tested strains biosurfactant production occurred mainly in the first 4 h. The Lactobacillus strains showed zones of clearing in the blood agar with a diameter <1 cm. The minimum surface tension value of the fermentation broth achieved was 39.5 mN/m for Lactobacillus pentosus CECT-4023 that represents a reduction in the surface tension of 10.5 mN/m comparing with the control. Time courses of glucose, biomass and biosurfactant were modeled according to reported models. Using MRS broth (Man, Rogosa & Sharpe medium for lactobacilli strains) as culture medium, the values estimated by the modeling of biosurfactant were Pmax = 1.6 g of biosurfactant/L and rp/X = 0.091 g/(L h), for Lactobacillus casei CECT-5275, Pmax = 1.7 g/L and rp/X = 0.217 g/(L h) for Lactobacillus rhamnosus CECT-288, Pmax = 1.7 g/L and rp/X = 0.069 g/(L h) for L. pentosus CECT-4023 and Pmax = 1.8 g/L and rp/X = 0.090 g/(L h) for Lactobacillus coryniformis subsp. torquens CECT-25600. Pmax is the maximum concentration of biosurfactant (g/L), and Pr is the ratio between the initial volumetric rate of product formation (rp) and the initial product concentration P0 (g/L). Using whey as production medium, the values estimated by the modeling of biosurfactant for L. pentosus CECT-4023 were Pmax = 1.4 g of biosurfactant/L and rp/X = 0.093 g/(L h). In conclusion, the results obtained for L. pentosus CECT-4023 showed that this is a strong biosurfactant producer strain and that cheese whey can be used as an alternative medium for biosurfactant production

    Modeling of biosurfactant production by Lactobacillus Strains

    Get PDF
    Screening of biosurfactant-producing ability of three Lactobacillus strains was performed, being shown that, for all the tested strains, biosurfactant production is occurring mainly in the first 7 hours. All strains reduced 8 mN/m the surface tension of the fermentation broth at the end of fermentation and lysed blood agar with scores ranging between (++) corresponding to complete hemolysis with a diameter < 1 cm. Time courses of lactose, biomass and biosurfactant were modeled according to reported models, assuming product inhibition. Using optimized MRS broth as culture medium, the values estimated by the modeling of biosurfactant were P_max = 1.4 g of biosurfactant/L and rp/X = 0.137g/L.hˉ¹ for Lactobacillus casei CECT-5275, P_max = 1.5 g/L and rp/X = 0.145g/L.hˉ¹ for Lactobacillus rhamnosus CECT-288 and P_max = 1.5 g/L and rp/X = 0.089 g/L.hˉ¹ for Lactobacillus pentosus CECT-4023. Using whey as production medium, the values obtained for Lactobacillus rhamnosus CECT-288 were P_max = 1.3 g of biosurfactant/L and rp/X = 0.078 g/L.hˉ¹. In conclusion, the results obtained showed that whey can be used as an alternative medium for biosurfactant production by Lactobacillus strains

    New trends in biotechnological processes to increase the environmental protection

    Get PDF
    A sustainable development can be achieved by deepening into more effective and eco-friendly products and technologies. From this point of view, the development of biotechnological processes to increase the environmental protection could be included in the best available techniques reference documents, the so-called BREFs, that cover, as far as practicable, the industrial activities to achieve an integrated pollution prevention and control. Members of the European Union are required to take these documents into account when determining the best available techniques, generally or in specific cases under the European Commission Directives. In order to include biotechnological processes into the BREFs, for example, for obtaining food and pharmaceutical additives, these products have to be cost competitive with those synthesized by chemical ways. Biotechnological processes are advantageous compared to the chemical ones since various metabolites can be obtained simultaneously in the same process, and these metabolites are more eco-friendly than their chemical counterparts. Additionally, this feature also matches the increasing demand of consumers for natural products, which has intensified the biotechnological production of natural additives. This special issue reports advances in the use of biotechnological processes for the treatment of contaminated soil or water as well as the revalorization of agroindustrial residues through the production of valuable metabolites such as biosurfactants or antioxidants, with applications in biomedicine, food industry, pharmaceutical industry, or environmental bioremediation

    Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application

    Get PDF
    The use of composts and vermicomposts as adsorbents is an important topic of study in the field of environmental remediation. These materials are rich in organic matter and have functional groups that can interact with organic and inorganic compounds. They also contain microorganisms that can promote biodegradation of organic substances. Composts that cannot be used for agronomic purposes (owing to e.g. low nutrient levels or phytotoxicity) may be valuable for soil remediation or pollutant removal. In this review, we discuss papers on this topic, with the objective of drawing attention to the potential use of composts/vermicomposts and to recommend further investigation on this subject. Few published studies have investigated the use of composts/vermicomposts to remove dyes and other coloured compounds. However, preliminary results show that these materials are potentially good adsorbents, at least comparable to other low-cost adsorbents, and that, in general, basic dyes are more efficiently removed than direct, reactive or acid dyes. The results of the works reviewed also show that dye removal takes place by adsorption mechanisms, in most studies following a Langmuir model, and that the kinetics of removal are fast and follow a pseudo-second order model. However, there remain several uncertainties regarding this application. For example, very few dyes have been studied so far, and little is known about the influence of the properties of composts/vermicomposts on the dye removal process. Moreover, the possible use of compost/vermicompost to enhance biodegradation processes has not been explored. All these questions should be addressed in future research.Postprint (author's final draft

    Industrial symbiosis between the winery and environmental industry through the Utilization of grape marc for water desalination containing copper(II)

    Get PDF
    A bioadsorbent formulated with a secondary raw material, consisting of grape marc, subjected to a bioxidize process and entrapped in calcium alginate beads, was used for the desalination of water containing copper(II) sulfate. Experiments were established under different experimental conditions varying the concentration of contaminant, the amount of bioadsorbent, and the extraction time through response surface methodology. The most significant variable in the removal of copper(II) sulfate was the amount of bioadsorbent employed, followed by the extraction time; whereas, the adsorbent capacity was more influenced by the amount of contaminant and the amount of bioadsorbent used. At the highest concentration of copper(II) sulfate (0.15 mol/L), the equations obtained predict that the bioadsorbent has a capacity of 2785 mg/g and produces a copper(II) removal about 43% using low adsorbent/water ratios, 1:10 (v/v), and maximum extraction times; whereas, it would remove 97.2% of copper(II) sulfate in 5 min, using adsorbent/water ratios close to 1:2 (v/v), with capacity values, in this case, around 1800 mg/g. The encapsulation of the bioxidize adsorbent increased its capacity to 30% and allowed the precipitation of sulfate ions as calcium sulfate. The results obtained in this work could presume advances for promoting the industrial symbiosis between winery and environmental industries.Peer ReviewedPostprint (author's final draft

    Production of D(-)lactic acid from cellulose by simultaneous saccharification and fermentation using "Lactobacillus coryniformis" subsp. "torkens"

    Get PDF
    D(−)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(−)-lactic acid g−1 cellulose at a mean volumetric productivity of 0.5 g l−1 h−1. No L(+)-lactic acid was found in the medium

    Biological surfactants vs. polysorbates: Comparison of their emulsifier and surfactant properties

    Get PDF
    In this work two biological surfactants, a cell-bound biosurfactant produced by Lactobacillus pentosus and a biosurfactant obtained from a fermented stream corn milling industry, were compared with two chemical surfactants (polysorbate 20 and polysorbate 80) in terms of surface tension reduction, critical micellar concentration (CMC), oil spreading and emulsifying capacity. Biological surfactants showed a similar ability to reduce the surface tension of water as polysorbates, which was in conformance with the results obtained in the drop collapse test. Regarding the ability to spread the oil on water, both biosurfactants produced similar results as polysorbates after 1 h. However, after 24 h, polysorbates and biosurfactant from corn stream were more effective than L. pentosus biosurfactant, producing greater free oil areas. Concerning the emulsifying activity, in terms of relative emulsion volume (EV), the biosurfactant produced from L. pentosus gave the best results (EV = 100%), after 1 day of emulsion formation, keeping this value over 50% after 15 days of emulsion formation; whereas polysorbates gave EV values lower than 50%. The CMC values of the biosurfactant from corn stream and of polysorbates were closer in comparison with the CMC value of L. pentosus biosurfactant, observing that the characteristics and properties of the biosurfactant from corn stream are more similar to polysorbates than to L. pentosus biosurfactant. Thus, it could be speculated that biosurfactant from corn stream would be a good substitute for polysorbatesPeer ReviewedPostprint (published version

    A Multifunctional biosurfactant extract obtained from corn steep water as bactericide for agrifood industry

    Get PDF
    The increase of crop production along with stricter requirements on food security have augmented the demand of new and eco-friendly bactericides. Most of the bactericides used at the moment consist of persistent organic substances, representing a risk for environmental and human health. For instance, agriculture bactericides used for crop protection includes copper-based, dithiocarbamate and amide bactericides, which are not biodegradable, resulting in the necessity of further research about the production of new active principles that attack microorganisms without producing any harmful effect on human health or environment. The biosurfactant extract evaluated in this work as a bactericide, is obtained from corn steep water, a residual stream of corn wet milling industry, which is fermented spontaneously by probiotic lactic acid bacteria that possess the capacity to produce biosurfactants. In previous works, it has been demonstrated that this biosurfactant extract is able to promote the growth of Lactobacillus casei in drinkable yogurts, though its antimicrobial activity against pathogenic strains has not been evaluated at the moment. The results obtained in this work have proved that this biosurfactant extract is effective as bactericide against Pseudomonas aeruginosa and Escherichia coli, at concentrations of 1 mg/mL, opening the door to its use in agrifood formulations for reducing the use of chemical pesticides and preservatives.Postprint (author's final draft

    Effect of a biosurfactant extract obtained from a corn kernel fermented stream on the sensory colour properties of apple and orange juices

    Get PDF
    In this work, we assessed the effect of a biosurfactant extract, which possesses preservative properties, on the sensory properties, regarding colour, of two fruit juices: pasteurized apple juice and natural orange juice. This biosurfactant extract was obtained from corn steep liquor, a secondary stream of the corn wet-milling industry. The biosurfactant extract is composed of natural polymers and biocompounds released during the spontaneous fermentation of corn kernels during the steeping process of corn. The reason for this study is based on the importance of colour as a visual attribute that can determine the consumer’s preferences; it is important to study the effect of the biosurfactant extract under evaluation before including it in juice matrices. For this, a surface response factorial design was employed and the effects of the biosurfactant extract concentration (0–1 g/L), the storage time (1–7 days), and the conservation temperature (4–36 °C) on the CIELAB colour parameters (L*, a*, b*) of the juice matrices were evaluated, as well as the total colour differences (ΔE*) regarding the control juices and the saturation index (Cab*). Moreover, the CIELAB coordinates of each conducted treatment were converted into RGB values to obtain visual colour differences that can be appreciated by testers or consumers.Ministerio de Ciencia e Innovación | Ref. PDC2022-133432-I0
    • …
    corecore