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Abstract

Screening of biosurfactant-producing ability of fourLactobacillus strains was performed, being shown that for all the tested strains
biosurfactant production occurred mainly in the first 4 h. TheLactobacillus strains showed zones of clearing in the blood agar with a diameter
<1 cm. The minimum surface tension value of the fermentation broth achieved was 39.5 mN/m forLactobacillus pentosus CECT-4023 that
r

n, Rogosa
&
o
r
L
b n
m d
r

cheese
w
©

K

1

c
i
a
n
m
L
t
c

tant

nds
ence
t of
hich
lters

ence

terial,
ts

they
tions
food

1
d

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM
epresents a reduction in the surface tension of 10.5 mN/m comparing with the control.
Time courses of glucose, biomass and biosurfactant were modeled according to reported models. Using MRS broth (Ma
Sharpe medium forlactobacilli strains) as culture medium, the values estimated by the modeling of biosurfactant werePmax= 1.6 g

f biosurfactant/L andrp/X = 0.091 g/(L h), forLactobacillus casei CECT-5275,Pmax= 1.7 g/L andrp/X = 0.217 g/(L h) forLactobacillus
hamnosus CECT-288,Pmax= 1.7 g/L andrp/X = 0.069 g/(L h) forL. pentosus CECT-4023 andPmax= 1.8 g/L andrp/X = 0.090 g/(L h) for
actobacillus coryniformis subsp.torquens CECT-25600.Pmax is the maximum concentration of biosurfactant (g/L), andPr is the ratio
etween the initial volumetric rate of product formation (rp) and the initial product concentrationP0 (g/L). Using whey as productio
edium, the values estimated by the modeling of biosurfactant forL. pentosus CECT-4023 werePmax= 1.4 g of biosurfactant/L an

p/X = 0.093 g/(L h).
In conclusion, the results obtained forL. pentosus CECT-4023 showed that this is a strong biosurfactant producer strain and that

hey can be used as an alternative medium for biosurfactant production.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Lactobacillus species are often together withStreptococ-
us being used as acid and flavor producers in the dairy
ndustry[1]. In addition to their occurrence in plant material
nd food products, lactobacilli also inhabit the gastrointesti-
al tract of healthy mammals, and they are the most common
embers of indigenous microflora of the urogenital tract[2].

actobacillus and Streptococcus species have been shown
o be able to displace adhering uropathogenicEnterococ-
us faecalis from hydrophobic and hydrophilic substrata in

∗ Corresponding author. Tel.: +351 253 604400; fax: +351 253 678986.
E-mail address: jateixeira@deb.uminho.pt (J. Teixeira).

a parallel-plate flow chamber, possibly through biosurfac
production[3].

Biosurfactants are biological surface-active compou
released by microorganisms that can have some influ
on interfaces. With regard to an anti-adhesive effec
biosurfactants, hypotheses have been forwarded in w
adsorption of biosurfactants to a substratum surface a
the hydrophobicity of the surface and causes interfer
in microbial adhesion and desorption processes[4]. Biosur-
factants have also been reported to have strong antibac
antifungal and antiviral activity[5]. Interest in biosurfactan
has been increased considerably in recent years, as
are potential candidates for many commercial applica
in the petroleum, pharmaceuticals, biomedical and
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Nomenclature

F value F-test statistical parameter
MRS broth medium introduced by De Man, Rogosa

and Sharpe for cultivation ofLactobacillus
species, purchased from OXOID, Basingstoke,
UK

P biosurfactant concentration (g/L)
P0 initial biosurfactant concentration (g/L)
Pmax maximum concentration of biosurfactant (g/L)
Pr ratio between initial volumetric rate of biosur-

factant formation (rp) and initial biosurfactant
concentrationP0 (h−1)

PBS phosphate-buffered saline (PBS: 10 mM
KH2PO4/K2HPO4 and 150 mM NaCl with
pH adjusted to 7.0)

r2 correlation coefficient
rp initial volumetric rate of biosurfactant forma-

tion (g/(L h))
S substrate (glucose or lactose) concentration

(g/L)
S0 initial substrate (glucose or lactose) concentra-

tion (g/L)
X biomass concentration (g/L)
X0 initial biomass concentration (g/L)
Xmax maximum concentration of biomass (g/L)
YP/S product yield (g/g)
YX/S biomass yield (g/g)
µmax ratio between initial volumetric rate of biomass

formation (rp) and initial biomass concentra-
tion X0 (h−1)

processing industries[4]. Dairy Streptococcus thermophilus
strains, for example, can produce biosurfactants that cause
their own desorption[6] and Rodrigues et al.[7] found that
a biosurfactant obtained fromS. thermophilus A showed a
significant antimicrobial activity against several microor-
ganisms that contribute to the premature failure of voice
prostheses. In another study the use of a biosurfactant from
Lactococcus lactis 53 as antimicrobial and/or anti-adhesive
agent and its ability to inhibit adhesion in a parallel-plate
flow chamber of various microorganisms isolated from
explanted voice prostheses has been demonstrated[8].

Depending upon the nature of the biosurfactant and the
producing microorganisms, several patterns of biosurfactant
production by fermentation are possible. Velraeds et al.[3]
showed that biosurfactant release by lactobacilli is maximum
for cells in the stationary phase, and growth-associated bio-
surfactant production has been described for the release of
biodispersan byAcinetobacter calcoaceticus [9]. In addi-
tion, biosurfactant production may occur or be stimulated
by growing the microbial cells under growth-limiting condi-
tions.Pseudomonas aeruginosa shows an overproduction of
rhamnolipid when the culture reaches the stationary growth
phase due to limitation of the nitrogen source[9].

The biosurfactant production by growing cells has been
reported to be affected by environmental factors[1], for
example, the carbon source plays an important role. A good
substrate for biosurfactant production is lactic whey, as it
is composed of high levels of lactose (75% dry matter),
12–14% protein, organic acids and vitamins. Whey is a
waste product from cheese production that represents a major
pollution problem for countries depending on dairy eco-
nomics and is normally used as animal feed. Sophorolipids
production using whey was reported by Otto et al.
[10].

The aims of this study were to screen a number ofLac-
tobacillus strains for biosurfactant production by blood agar
method and surface tension determination, and to model the
biosurfactant production as well as the time courses of glu-
cose consumption and biomass growth. The relation between
cellular growth and surface-activity of the biosurfactant in
time (as a measure of its production) was determined for all
the strains.

2. Materials and methods

2.1. Strains and culture conditions

SeveralLactobacillus strains were investigated in this
s ,
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tudy. The bacterial strainsLactobacillus casei CECT-5275
actobacillus rhamnosus CECT-288,Lactobacillus pentosus
ECT-4023 andLactobacillus coryniformis subsp.torquens
ECT-25600 obtained from the Spanish Collection of T
ultures (Valencia, Spain) were stored at−20◦C in MRS
roth (medium introduced by De Man, Rogosa and Sharp
ultivation of Lactobacillus species, OXOID, Basingstok
K) containing 15% (v/v) glycerol solution until ready
se. From frozen stock, bacteria were streaked on MRS
lates and incubated at the optimum temperature for
train for further culturing.

.2. Growth curves

Growth curves for theLactobacillus strains were dete
ined because biosurfactant production may be influe
y the growth phase of the organisms[9]. The bacterial strain
ere cultured in shake flasks without baffles with 100
RS broth (OXOID, Basingstoke, UK) and growth was m

ured by determining the optical density at 600 nm during
erent time intervals up to 72 h. The biomass concentra
g dry weight l−1) were determined using a calibration cur
he calibration curve was calculated for each strain u
ilutions of a biomass suspension with known optical den
fixed volume of the dilutions was filtered (0.22�m) and left

o dry at 105◦C for 24 h. All the filters were weighed befo
he filtration and after drying. Thus, a relationship betw
iomass concentration (g/l) and optical density (600 nm
e determined (Cbiomass(g/L) = (OD600 nm× 0.506) + 0.036
2 = 0.9998).
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2.3. Blood agar screening method

The blood agar method is widely used to screen for
biosurfactant production and several studies where this
method was employed are reported in the literature[11–14].
Briefly, each strain was streaked onto blood agar plates
and incubated for 48 h at 37◦C or 31◦C. The plates were
visually inspected for zones of clearing around colonies. The
diameter of the clear zones depends on the concentration of
the crude biosurfactant. The zones of clearing were scored
as follows: (−) no hemolysis; (+) incomplete hemolysis;
(++) complete hemolysis with a diameter of lysis <1 cm;
(+++) complete hemolysis with a diameter of lysis >1 cm
but <3 cm; and (++++) complete hemolysis with a diameter
of lysis >3 cm and green colonies.

2.4. Biosurfactant production

The bacterial strains were cultured in 100 ml MRS
broth and grown for 72 h, in ambient air at 31◦C for L.
pentosus and 37◦C for all the otherLactobacillus strains. For
extracellular biosurfactant determination, at different time
intervals samples were taken to assay the surface-activity of
the media broth.

For intracellular biosurfactant determination, at the end of
the experiments (72 h) cells were harvested by centrifugation
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The surface tension of the culture broth samples of the
PBS extraction samples and also of the whey fermenta-
tion with L. pentosus was measured by the Ring method
[15] using a KRUSS Tensiometer equipped with a 1.9 cm
De Nöuy platinum ring at room temperature. Tensiometers
determine the surface tension with the help of an optimally
wettable ring suspended from a precision balance. In the Ring
method the liquid is raised until contact with the surface
is registered. The sample is then lowered again so that the
liquid film produced beneath the ring is stretched. As the
film is stretched a maximum force is experienced, the force
is measured and used to calculate the surface tension. To
increase the accuracy an average of triplicates was used for
this study.

The biosurfactant concentrations (g/L) were deter-
mined for eachLactobacillus strain using a calibration
curve (surface tension (mN/m) =−8.6465 concentra-
tion (g/L) + 76.984,r2 = 0.9729). The calibration curve was
calculated for a commercial biosurfactant produced by
severalBacilli (surfactin) using different concentrations of
biosurfactant solution, below the critical micelle concen-
tration with known surface tension. In this biosurfactant
concentration range the decrease of surface tension is linear
and it is possible to establish a relationship between the
biosurfactant concentration and the surface tension[15].
Nevertheless, to estimate biosurfactant concentration it was
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10,000× g, 5 min, 10◦C), washed twice in demineraliz
ater, and resuspended in 20 ml of phosphate-buf
aline (PBS: 10 mM KH2PO4/K2HPO4 and 150 mM NaC
ith pH adjusted to 7.0)[2]. The bacteria were left at roo

emperature up to 24 h with gentle stirring for biosurfac
elease. During extraction process samples were tak
ifferent time intervals, bacteria were removed by cent
ation and the remaining supernatant liquid was teste
urface-activity.

For L. pentosus the biosurfactant production was a
ssayed growing the strain in whey at 31◦C. Commercia
hey was prepared as follows: after adjusting the pH to
ith 5 N HCl, it was heated at 121◦C for 15 min to denatur

he proteins. The precipitates were removed by centrif
ion at 4◦C and 8000× g for 10 min. The supernatants we
djusted to pH 6.3, sterilized at 121◦C for 15 min and used a
ulture media. The supernatant contained 56 g/L of lact

.5. Analytical methods

Sugars were determined by high performance chrom
aphy (Agilent, model 1100, Palo Alto, CA) using ION-3
olumn (Transgenomic Inc., San Jose, CA) with refrac
ndex detector. The mobile phase was 0.01 N H2SO4 with a
ow rate of 0.4 ml min−1.

.6. Surface-activity determination

The surface-activity of biosurfactants produced by
acterial strains was determined by measuring the su

ension of the samples with the Ring method[5].
ecessary sometimes to dilute the culture broth to reac
ritical micelle concentration.

.7. Glucose consumption and biosurfactant
roduction—fitting of data

Experimental data were fitted to proposed models u
ommercial software (Solver of Microsoft Excel 2002)
onlinear regression using the least-squares method. B

actant production was mathematically modeled follow
he equation proposed by Mercier et al.[14] for lactic acid
roduction

dP

dt
= PrP

(
1 − P

Pmax

)
(1)

heret is time (h),P is biosurfactant concentration (g/L
max is maximum concentration of biosurfactant (g/L), a
r is the ratio between the initial volumetric rate of prod

ormation (rp) and the initial product concentrationP0 (g/L).
q. (1) can be directly solved to give the Eq.(2)

= P0PmaxePrt

Pmax − P0 + P0eP rt
(2)

rom the series of experimental data biosurfactant
entration/time, the model parametersP0, Pmax, and Pr
an be calculated for eachLactobacillus strain grow-
ng in MRS broth, and also forL. pentosus growing
n whey.
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Also biomass production was mathematically modeled
and can be interpreted by Eq.(3)

X = X0Xmaxeµmaxt

Xmax − X0 + X0eµmaxt
(3)

wheret is time (h),X is biomass concentration (g/L),Xmax
is maximum concentration of biomass (g/L), andµmax (h−1)
is the ratio between the initial volumetric rate of biomass
formation and the initial biomass concentrationX0 (g/L). The
model parametersX0, Xmax, andµmaxcan be calculated from
the series of experimental data biomass concentration/time.

Glucose consumption by theLactobacillus strains can be
interpreted by the Eq.(4)

S = S0 − 1

YP/S

(P − P0) − 1

YX/S

(X − X0) (4)

whereYP/S (g/g) andYX/S (g/g) are the product yield for bio-
surfactant and biomass, respectively,P andP0 are the final
and initial biosurfactant concentrations (g/L),X andX0 are the
final and initial biomass concentrations (g/L), and finallyS0 is
the initial glucose concentration (g/L). The model parameters
YP/S, YX/S andS0 (g/L) were calculated for eachLactobacillus
strain from the series of experimental data glucose concen-
tration/time and the Eqs.(2) and(3).

The mathematical model proposed by Mercier et al.[16]
w , sub-
s ttern,
a l will
a l sig-
n

3

3
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Fig. 1. Blood agar screening method results forL. casei CECT-5275 (up-
left spot),L. rhamnosus CECT-288 (up-right spot),L. pentosus CECT-4023
(down-left spot) andL. coryniformis subsp.torquens CECT-25600 (down-
right spot).

corresponding to complete hemolysis with a diameter <1 cm,
as can be seen inFig. 1. Table 1shows that all these strains
allowed for a surface tension reduction between 8 mN/m
and 10.5 mN/m when compared with the control MRS broth
(50 mN/m) consistent with their ability to produce biosurfac-
tants.

3.2. Biosurfactant production

Growth curves were obtained for the fourLactobacillus
strains in order to establish the relation between cell growth
and surface-activity of the biosurfactant in time as can be seen
in Fig. 2andTable 1. For all the strains the biosurfactant pro-
duction is occurring mainly in the first hours (4 h) where cell
growth is almost inexistent and the substrate consumption is
very low. However, the biosurfactant production continues

T
S tants during the 72 h fermentation (the control surface tension (MRS) was 50 mN/m) and
f rface tension (PBS) was 72 mN/m)

L natants (mN/m)

10 h 24 h 48 h 72 h

L 43.0± 0.1 43.0± 0.4 43.0± 0.3 42.0± 0.2
L 42.3± 0.4 42.3± 0.1 42.0± 0.7 40.0± 0.9
L 43.8± 0.8 43.3± 0.0 42.3± 0.1 39.5± 0.1
L 42.5± 0.2 41.5± 0.6 41.0± 0.0 40.5± 0.3

acted w

L .2
L .0
L .1
L .4

R icate e
as chosen because it fairly describes biomass growth
trate consumption and product accumulation kinetic pa
nd is reasonable to predict that this mathematical mode
djust the biosurfactant production results with statistica
ificance of the parameters determined.

. Results

.1. Blood agar screening method

All of the testedLactobacillus strains showed zones
learing in the blood agar with scores ranging between

able 1
urface tension values (mN/m) obtained for the culture broth superna

rom the biosurfactant extraction with PBS during 24 h (the control su

actobacillus strains Surface tension of culture broth super

0 h 4 h

. casei 50.0± 0.0 44.0± 0.5

. rhamnosus 50.0± 0.1 43.5± 1.0

. pentosus 50.0± 0.0 45.0± 0.3

. coryniformis 50.0± 0.1 43.0± 0.8

Surface tension of biosurfactant extr

0 h 0.5 h

. casei 70.0± 0.1 55.0± 0

. rhamnosus 70.0± 0.2 56.0± 0

. pentosus 70.0± 0.3 56.0± 0

. coryniformis 72.0± 0.1 60.0± 0

esults are expressed as mean± standard deviations of values from tripl
ith PBS (mN/m)

8 h 24 h

53.0± 0.3 53.0± 0.1
52.0± 0.1 51.5± 0.2
51.0± 0.2 50.5± 0.1
55.0± 0.5 55.0± 0.1

xperiments.
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Fig. 2. Representation of the surface tension variation (- -*- -), experimental data and calculated time courses of biomass (�, - - -), glucose (�, — - —) and
biosurfactant concentrations (�, —) during fermentations carried out with MRS broth using (A)L. casei CECT-5275; (B)L. rhamnosus CECT-288; (C)L.
pentosus CECT-4023; (D)L. coryniformis subsp.torquens CECT-25600. Results represent the average of three independent experiments.

during all 72 h of fermentation but at a very slow production
rate. As the decrease in the surface tension exceeded 8 mN/m
[2,6], all four strains were found to produce biosurfactants.
The surface tension decreases were compared with the sur-
face tension of MRS broth (control) to correct for lower initial
surface tension values as a result of the medium ingredients
that can have surface-active characteristics themselves.

3.3. Biosurfactant extraction with PBS—fitting of data

Reduction of surface tension during the PBS extraction
of cells in stationary phase were fitted to proposed models
using commercial software (Table Curve Windows v1.11).
For all theLactobacillus strains an exponential fit was possi-
ble according to the following equation:

y = a + be(−x/c) (5)

wherey is surface tension (mN/m) andx is the extraction
time (h). The equation parameters obtained were very simi-
lar for all the tested strains, witha = 52± 1.5; b = 18± 1.2;
c = 0.4± 0.14 andr2 = 0.991.Table 1compiles the surface
tension values decrease along the 24 h extraction procedure
with PBS and it was found that all theLactobacillus strains
released intracellular biosurfactants. These strains allowed a
surface tension reduction between 17 mN/m and 21.5 mN/m

when compared with the control PBS (72 mN/m), beingL.
pentosus the best biosurfactant producer strain.

3.4. Fermentations in MRS broth

Fermentation runs were carried out using the fully sup-
plemented medium MRS broth for allLactobacillus strains.
Fig. 2 shows the experimental data as well as the predicted
values calculated by Eqs.(2)–(4)using the regression param-
eters listed inTable 2. All experiments show a kinetic pattern
fairly described by the mathematical models withr2 > 0.891,
0.907 and 0.907 for glucose consumption, biomass and bio-
surfactant production, respectively. It can be noted thatL.
coryniformis presents the highestPmax (1.8 g of biosurfac-
tant/L) followed byL. rhamnosus, L. pentosus andL. casei.
Regarding theYP/S all the Lactobacillus strains present the
values between 0.08 g/g and 0.09 g/g. With regard to the
regression parameters listed inTable 2, the most remarkable
finding was that the product yields calculated for all strains
was roughly the same, which means that all the four strains
showed a similar behavior concerning biosurfactant produc-
tion. Therp/X values listed inTable 2reflect the activity of
the microorganisms concerning biosurfactant production. It
can be seen thatL. rhamnosus presents the highestrp/X value
(0.217 g/(L h)) followed byL. casei, L. coryniformis andL.
pentosus.
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Table 2
Results obtained by regression of biosurfactant, biomass and glucose concentration data in MRS broth fermentationsa

Lactobacillus
strains

Biosurfactant production Biomass growth Glucose consumption

P0

(g/L)
Pmax

(g/L)
Pr

(h−1)
rp/X
(g/(L h))

r2 F value X0

(g/L)
Xmax

(g/L)
µmax

(h−1)
r2 F value S0

(g/L)
YP/S

(g/g)
YX/S

(g/g)
r2 F value

L. casei 0.8 1.6 0.612 0.091 0.993 286b 0.11 5.5 0.324 0.998 858b 26.7 0.08 0.34 0.955 43c

L. rhamnosus 0.8 1.7 1.215 0.217 0.969 63c 0.12 4.6 0.299 0.984 145d 28.4 0.09 0.25 0.939 31c

L. pentosus 0.9 1.7 0.506 0.069 0.891 16e 0.10 6.4 0.409 0.990 204b 24.5 0.09 0.41 0.977 86c

L. coryniformis 0.8 1.8 0.637 0.090 0.974 76c 0.18 5.9 0.107 0.907 19f 28.1 0.09 1.38 0.956 43c

a Parameters defined in the nomenclature.
b Significance level >99.5%.
c Significance level >97.5%.
d Significance level >99%.
e Significance level >90%.
f Significance level >95%.

3.5. L. pentosus fermentations in whey

The lowest value of surface tension was achieved in the
stationary phase (45 mN/m) and the reduction in the sur-
face tension exceeded 8 mN/m[2,6]. The surface tension
decreases were compared with the surface tension of whey
broth control (54 mN/m).

Fermentation was carried out using whey as culture broth
for L. pentosus strain because this was the strain that showed
best results concerning simultaneously cell growth and bio-
surfactant production. Nothing else besides whey was used
for media preparation.Fig. 3 shows the experimental data
as well as the predicted values calculated by Eqs.(2)–(4)
using the regression parameters listed inTable 3. The exper-
iment show a kinetic pattern reasonably described by the
mathematical model with 0.959 and 0.990 for biomass and
biosurfactant production, respectively. Ther2 value obtained
for lactose consumption was not so good (r2 = 0.698) and
this could be explained by the fact that not all the lactose was
consumed during the cell growth. Moreover, the lactose con-
sumption at certain time of fermentation becomes constant
while biomass growth is still increasing maybe due to the
fact thatL. pentosus metabolizes other medium ingredients
rather than lactose, thus very high residual sugar content was
left at the end of fermentation. It was achievedPmax= 1.4 g
of biosurfactant/L,Pr = 0.353 h−1 and rp/X = 0.093 g/(L h).
R nd
X

Fig. 3. Representation of the surface tension variation (- -*- -), experimental
data and calculated time courses of biomass (�, - - -), glucose (�, — - —) and
biosurfactant concentrations (�, —) during fermentations carried out with
whey broth usingL. pentosus CECT-4023. Results represent the average of
three independent experiments.

possible to observe that this strain did not grow very well
maybe because not all its nutritional requirements were ful-
filled, although similar concentrations of biosurfactant were
achieved if compared to those obtained with MRS medium.
Comparing the kinetic parameters obtained with the two-
tested medium, it was possible to notice that a lowerµmax
(10% less than with synthetic medium) was obtained with
whey medium, as well as a lowerXmax (approximately one-
third of the value obtained with synthetic medium).

T
R concentration data forL. pentosus in whey broth fermentationa

B Lactose consumption

P
(

ax

/L)
µmax

(h−1)
r2 F value S0

(g/L)
YP/S

(g/g)
YX/S

(g/g)
r2 F value

0 5 0.05 0.959 46c 55.6 0.09 3.1 0.698 5d
egarding theYP/S the value obtained was 0.09 g/g a
max= 1.5 g/L with aµmax of 0.05 h−1. From Fig. 3 it is

able 3
esults obtained by regression of biosurfactant, biomass and lactose

iosurfactant production Biomass

0

g/L)
Pmax

(g/L)
Pr (h−1) rp/X

(g/(L h))
r2 F value X0

(g/L)
Xm

(g

.4 1.4 0.353 0.093 0.990 195b 0.2 1.
a Parameters defined in the nomenclature.
b Significance level >99%.
c Significance level >95%.
d Significance level >90%.
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4. Discussion

The lactic acid bacteriaL. casei CECT-5275, L.
rhamnosus CECT-288, L. pentosus CECT-4023 andL.
coryniformis subsp.torquens CECT-25600 were found to be
biosurfactant-producing strains. Depending upon the nature
of the biosurfactant and the producing microorganisms,
several patterns of biosurfactant production by fermentation
are possible[9]. In our study the biosurfactant production
is occurring mainly in the first hours (4 h) where cell growth
is almost inexistent and the substrate consumption is very
low. However, for all strains the biosurfactant production
continues during all 72 h of fermentation but at a very
slow production rate. This slow production rate can be a
consequence of product inhibition and pH reduction. The
pH reduction results of simultaneous production of lactic
acid that changes drastically the media conditions and can
be responsible for the biosurfactant production inhibition.
The lowest values of surface tension were obtained at the
end of fermentation, therefore, our present observation that
biosurfactant release by the selected lactobacilli strains is
maximal for cells in the stationary cells is in accordance
with the general notion on this point in the literature[2,3,9].
Four Lactobacillus strains were screened for biosurfactant
production by surface tension determination, and the bio-
surfactant production as well as the time courses of glucose
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and in some cases, it is the sole method used[14]. None of the
studies reported in the literature[11–14]mention the possibil-
ity of biosurfactant production without a hemolytic activity.
However, despiteLactobacillus species are not known to pro-
duce hemolysin, Andreu et al.[18] demonstrated that some
species agglutinate blood cells. Furthermore, the biosurfac-
tants obtained in this study were not purified, thus consist
of a mixture of several compounds other than biosurfactants
that may cause hemolysis. The hemolytic activity of biosur-
factants was first discovered when Bernheimer and Avigad
[19] reported that the biosurfactant produced byBacillus sub-
tilis, surfactin, lysed red blood cells. Blood agar lysis has been
used to quantify surfactin[11] and rhamnolipids[12] and has
been used to screen for biosurfactant production by new iso-
lates[13,14]. Carrillo et al.[13] found an association between
hemolytic activity and surfactant production, and they rec-
ommended the use of blood agar lysis as a primary method
to screen for biosurfactant activity. However, only 13.5% of
the hemolytic strains lowered the surface tension of water
below 40 mN/m. In addition, other microbial products such
as virulence factors lyse blood agar and biosurfactants that
are poorly diffusible may not lyse blood cells. Thus, as not
all biosurfactants have a hemolytic activity and compounds
other than biosurfactants may cause hemolysis it is not clear
whether blood agar lysis should be used exclusively to screen
for biosurfactant production and surface tension can then be
u
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onsumption and biomass growth modeled. The appr
sed in this study allowed the determination of the ferme

ion parameters as well as a way to deduce the biosurfa
xtraction with PBS for the four strains studied. From
BS extraction results it was found that the best biosurfa
roduction strain tested wasL. pentosus allowing a surfac

ension reduction of 21.5 mN/m when compared to
BS control (72 mN/m). Comparing results obtained
able 1is possible to conclude that with the accumulatio
iosurfactant in the culture broth lower surface tensions
chieved and also for the extracellular biosurfactant re
. pentosus showed the higher reduction in the surf

ension. The effectiveness of a surfactant is determine
ts ability to lower the surface tension. For example, a g
urfactant can lower the surface tension of water (air–w
nterface) from 72 mN/m to 35 mN/m[17]. In accordanc
ith literature the biosurfactants produced byPseudomonas
eruginosa and Bacillus subtilis lower the surface tensio
f water 29 mN/m and 27 mN/m, respectively[17].

For all four Lactobacillus strains, suitable models we
ound to describe the response of the experiments pe
ng to glucose consumption, cell growth and biosurfac
roduction. The models were validated by comparing
bserved and predicted values, and a deviation of abou
as found. The modeling procedure allowed a better c
cterization of the biosurfactant production by the dete
ation of the fermentation parameters and it was obser
easonable fitting with a significance level over 90%. A
ionally, the blood agar method was included in this st
ince it is widely used to screen for biosurfactant produc
sed to confirm the results if required.
Velraeds et al.[3] screened 15Lactobacillus isolates

or biosurfactant production and found thatLactobacil-
us acidophilus RC14 andLactobacillus fermentum B54
ere strongly biosurfactant-producing strains. Moreo

hey found that biosurfactant layers of severalLactobacillus
trains inhibited the adhesion of uropathogenicEnterococ-
us faecalis strain to glass in a parallel-plate flow cham
or 4 h, however the inhibition of the uropathogen by the
ral strains tested was not the same. This indicates that
re different aspects of adherence on the part of the path
nd that it should not be expected that the products o

erentLactobacillus strains would produce equivalent resu
or any given pathogen. Other biomedical applications o
iosurfactants were found in the literature, namely the u
iosurfactants obtained fromL. lactis 53 and fromS. ther-
ophilus A to prevent the microbial colonization of silico

ubber voice prostheses[7,8]. In our study as the decrease
he surface tension exceeded 8 mN/m, all four strains
ound to produce biosurfactants after reaching the statio
rowth phase and from all the above can be used for fu

nvestigation. The reference surface tension value (8 m
as previously described in the literature[6], and although
ust be emphasized that the criterion of 8 mN/m is of co

omewhat arbitrarily chosen and must not be consider
trict as suggested here, it represents twice the variati
urface tension of a suspension with a non-producing s
nd is therefore “on the safe side”.

Finally,L. pentosus was assayed for biosurfactant prod
ion using whey as the culture medium. Comparing with



116 L. Rodrigues et al. / Biochemical Engineering Journal 28 (2006) 109–116

results obtained for this strain growing in MRS it was possi-
ble to see thatL. pentosus did not grow well on whey medium
probably due to some lack of nutrients, although similar bio-
surfactant concentrations were obtained, which means that
with a culture medium optimization it could be possible to
achieve higher biosurfactant concentrations. The lack of fit
observed for the lactose consumption is probably caused by
the first data point of experimental lactose that is the one
which is worst fitted by the model, however the model has to
be seen as a balance between biomass growth, lactose con-
sumption and biosurfactant production, thus the model was
considered adequate.

5. Conclusions

A model could be established to follow the biosurfactant
production at any fermentation time for all the tested strains
with a significance level over 90%. The results obtained for
L. pentosus CECT-4023 showed that this is a strong bio-
surfactant producer strain and that whey can be used as an
alternative medium for biosurfactant production.
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