15 research outputs found

    Building Virtual Earth Observatories using Ontologies and Linked Geospatial Data

    Get PDF
    TELEIOS is a European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific database technologies (array databases, SciQL, data vaults), Semantic Web technologies (stRDF and stSPARQL) and linked geospatial data. In this technical communication we outline the TELEIOS advancements to the state of the art and give an overview of its technical contributions up to today

    Building virtual earth observatories using ontologies, linked geospatial data and knowledge discovery algorithms

    No full text
    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, satellite image archives have been constantly increasing in size in the last few years (now reaching petabyte sizes), and have become a valuable source of information for many science and application domains (environment, oceanography, geology, archaeology, security, etc.). TELEIOS is a recent European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery of knowledge that can be used in applications. To achieve this, TELEIOS builds on scientific databases, linked geospatial data, ontologies and techniques for discovering knowledge from satellite images and auxiliary data sets. In this paper we outline the vision of TELEIOS (now in its second year), and give details of its original contributions on knowledge discovery from satellite images and auxiliary datasets, ontologies, and linked geospatial data. © 2012 Springer-Verlag

    TELEIOS: A Database-Powered Virtual Earth Observatory

    No full text
    TELEIOS is a recent European project that addresses the need for scalable access to petabytes of Earth Observation data and the discovery and exploitation of knowledge that is hidden in them. TELEIOS builds on scientific database technologies (array databases, SciQL, data vaults) and Semantic Web technologies (stRDF and stSPARQL) implemented on top of a state of the art column store database system (MonetDB). We demonstrate a first prototype of the TELEIOS Virtual Earth Observatory (VEO) architecture, using a forest fire monitoring application as example

    Building Virtual Earth Observatories Using Ontologies and Linked Geospatial Data

    Get PDF
    Advances in remote sensing technologies have enabled public and commercial organizations to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation (EO) data has been constantly increasing in volume in the last few years, and is currently reaching petabytes in many satellite archives. For example, the multi-mission data archive of the TELEIOS partner German Aerospace Center (DLR) is expected to reach 2PB next year, while ESA estimates that it will be archiving 20PB of data before the year 2020. As the volume of data in satellite archives has been increasing, so have the scientific and commercial applications of EO data. Nevertheless, it is estimated that up to 95% of the data present in existing archives has never been accessed, so the potential for increasing exploitation is very big
    corecore