281 research outputs found

    Quadexciton cascade and fine structure splitting of the triexciton in a single quantum dot

    Full text link
    We report the properties of emission lines associated with the cascaded recombination of a quadexciton in single GaAlAs/AlAs quantum dots, studied by means of polarization-resolved photoluminescence and single-photon correlation experiments. It is found that photons which are emitted in a double-step 4X-3X process preserve their linear polarization, similarly to the case of conserved polarization of correlated photons in the 2X-X cascade. In contrast, an emission of either co-linear or cross-linear pairs of photons is observed for the 3X-2X cascade. Each emission line associated with the quadexciton cascade shows doublet structure in the polarization-resolved photoluminescence experiment. The maximum splitting is seen when the polarization axis is chosen along and perpendicular to the [110] crystallographic direction. This effect is ascribed to the fine structure splitting of the exciton and triexciton states in the presence of an anisotropic confining potential of ae dot. We also show that the splitting in the triexciton state surpasses that in the exciton state by a factor up to eight and their ratio scales with the energy distance between the 3X and X emission lines, thus, very likely, with a lateral size and/or a composition of the dot.Comment: submitted to Physical Review

    Raman scattering in few-layer MoTe2_{2}

    Full text link
    We report on room-temperature Raman scattering measurements in few-layer crystals of exfoliated molybdenum ditelluride (MoTe2_{2}) performed with the use of 632.8 nm (1.96 eV) laser light excitation. In agreement with recent study reported by G. Froehlicher et al, (2015 NanoNano Lett.Lett. 15 6481) we observe a complex structure of the out-of-plane vibrational modes (A1g_{1g}/A1^{'}_{1}), which can be explained in terms of interlayer interactions between single atomic planes of MoTe2_{2}. In the case of low-energy shear and breathing modes of rigid interlayer vibrations it is shown that their energy evolution with the number of layers can be well reproduced within a linear chain model with only the nearest neighbor interaction taken into account. Based on this model the corresponding in-plane and out-of-plane force constants are determined. We also show that the Raman scattering in MoTe2_{2} measured using 514.5 nm (2.41 eV) laser light excitation results in much simpler spectra. We argue that the rich structure of the out-of-plane vibrational modes observed in Raman scattering spectra excited with the use of 632.8 nm laser light results from its resonance with the electronic transition at the M or K points of the MoTe2_{2} first Brillouin zone.Comment: 8 pages, 8 figure

    Fine structure of K\mathrm{K}-excitons in multilayers of transition metal dichalcogenides

    Full text link
    Reflectance and magneto-reflectance experiments together with theoretical modelling based on the kp\mathbf{k\cdot p} approach have been employed to study the evolution of direct bandgap excitons in MoS2_2 layers with a thickness ranging from mono- to trilayer. The extra excitonic resonances observed in MoS2_2 multilayers emerge as a result of the hybridization of Bloch states of each sub-layer due to the interlayer coupling. The properties of such excitons in bi- and trilayers are classified by the symmetry of corresponding crystals. The inter- and intralayer character of the reported excitonic resonances is fingerprinted with the magneto-optical measurements: the excitonic gg-factors of opposite sign and of different amplitude are revealed for these two types of resonances. The parameters describing the strength of the spin-orbit interaction are estimated for bi- and trilayer MoS2_2.Comment: 14 pages, 10 figure

    Probing and manipulating valley coherence of dark excitons in monolayer WSe2_2

    Full text link
    Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly-bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX2_2 (X~being S or Se) spin-forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe2_2 monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.Comment: Manuscript: 6 pages, 3 figures; SM: 6 pages, 5 figure

    2s exciton-polariton revealed in an external magnetic field

    Full text link
    We demonstrate the existence of the excited state of an exciton-polariton in a semiconductor microcavity. The strong coupling of the quantum well heavy-hole exciton in an excited 2s state to the cavity photon is observed in non-zero magnetic field due to surprisingly fast increase of Rabi energy of the 2s exciton-polariton in magnetic field. This effect is explained by a strong modification of the wave-function of the relative electron-hole motion for the 2s exciton state.Comment: 5 pages, 5 figure

    Experimental approval of the extended flat bands and gapped subbands in rhombohedral multilayer graphene

    Get PDF
    Graphene layers are known to stack in two stable configurations, namely ABA or ABC stacking, with drastically distinct electronic properties. Unlike the ABA stacking, little has been done to experimentally investigate the electronic properties of ABC graphene multilayers. Here, we report the first magneto optical study of a large ABC domain in a graphene multilayers flake, with ABC sequences exceeding 17 graphene sheets. The ABC-stacked multilayers can be fingerprinted with a characteristic electronic Raman scattering response, which persists even at room temperatures. Tracing the magnetic field evolution of the inter Landau level excitations from this domain gives strong evidence to the existence of a dispersionless electronic band near the Fermi level, characteristic of such stacking. Our findings present a simple yet powerful approach to probe ABC stacking in graphene multilayer flakes, where this highly degenerated band appears as an appealing candidate to host strongly correlated states.Comment: 8 pages, 4 figure

    Neutral and charged dark excitons in monolayer WS2_2

    Full text link
    Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2_2 encapsulated in hexagonal BN (hBN). We find that this system is an nn-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2_2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be gg\sim-8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.Comment: 6 pages, 6 figures, supplemental materia
    corecore