33 research outputs found

    Biomass-derived carbon–silicon composites (C@Si) as anodes for lithium-ion and sodium-ion batteries: A promising strategy towards long-term cycling stability: A mini review

    Get PDF
    The global need for high energy density and performing rechargeable batteries has led to the development of high-capacity silicon-based anode materials to meet the energy demands imposed to electrify plug-in vehicles to curtail carbon emissions by 2035. Unfortunately, the high theoretical capacity (4200 mA h g−1) of silicon by (de-)alloy mechanism is limited by its severe volume changes (ΔV ∼ 200% − 400%) during cycling for lithium-ion batteries (LIBs), while for sodium-ion batteries (NIBs) remain uncertain, and hence, compositing with carbons (C@Si) represent a promising strategy to enable the aforementioned practical application. The present review outlines the recent progress of biomass-derived Si-carbon composite (C@Si) anodes for LIBs and NIBs. In this perspective, we present different types of biomass precursors, silicon sources, and compositing strategies, and how these impact on the C@Si physicochemical properties and their electrochemical performance are discussed

    Hexavalent Ions Insertion in Garnet Li7La3Zr2O12 Toward a Low Temperature Densification Reaction

    Get PDF
    Nowadays, solid electrolytes are considered the main alternative to conventional liquid electrolytes in lithium batteries. The fabrication of these materials is however limited by the strict synthesis conditions, requiring high temperatures which can negatively impact the final performances. Here, it is shown that a modification of garnet-based Li7La3Zr2O12 (LLZO) and the incorporation of tellurium can accelerate the synthesis process by lowering the formation temperature of cubic LLZO at temperatures below 700 °C. Optimized synthesis at 750 °C showed a decrease in particle size and cell parameter for samples with higher amounts of Te and the evaluation of electrochemical performances reported for LLZO Te0.25 a value of ionic conductivity of 5,15×10−5 S cm−1 after hot-pressing at 700 °C, two orders of magnitude higher than commercial Al-LLZO undergoing the same working conditions, and the highest value at this densification temperature. Partial segregation of Te-rich phases occurs for high-temperature densification. Our study shows the advantages of Te insertion on the sintering process of LLZO garnet and demonstrates the achievement of highly conductive LLZO with a low-temperature treatment

    Optimizing Current Collector Interfaces for Efficient “Anode-Free” Lithium Metal Batteries

    Get PDF
    Current lithium (Li)-metal anodes are not sustainable for the mass production of future energy storage devices because they are inherently unsafe, expensive, and environmentally unfriendly. The anode-free concept, in which a current collector (CC) is directly used as the host to plate Li-metal, by using only the Li content coming from the positive electrode, could unlock the development of highly energy-dense and low-cost rechargeable batteries. Unfortunately, dead Li-metal forms during cycling, leading to a progressive and fast capacity loss. Therefore, the optimization of the CC/electrolyte interface and modifications of CC designs are key to producing highly efficient anode-free batteries with liquid and solid-state electrolytes. Lithiophilicity and electronic conductivity must be tuned to optimize the plating process of Li-metal. This review summarizes the recent progress and key findings in the CC design (e.g. 3D structures) and its interaction with electrolytes

    Solution-Mediated Inversion of SnSe to Sb2Se3 Thin-Films

    Get PDF
    New facile and controllable approaches to fabricating metal chalcogenide thin films with adjustable properties can significantly expand the scope of these materials in numerous optoelectronic and photovoltaic devices. Most traditional and especially wet-chemical synthetic pathways suffer from a sluggish ability to regulate the composition and have difficulty achieving the high-quality structural properties of the sought-after metal chalcogenides, especially at large 2D length scales. In this effort, and for the first time, we illustrated the fast and complete inversion of continuous SnSe thin-films to Sb2Se3 using a scalable top-down ion-exchange approach. Processing in dense solution systems yielded the formation of Sb2Se3 films with favorable structural characteristics, while oxide phases, which are typically present in most Sb2Se3 films regardless of the synthetic protocols used, were eliminated. Density functional theory (DFT) calculations performed on intermediate phases show strong relaxations of the atomic lattice due to the presence of substitutional and vacancy defects, which likely enhances the mobility of cationic species during cation exchange. Our concept can be applied to customize the properties of other metal chalcogenides or manufacture layered structures

    Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating

    No full text
    Due to the ever-growing importance of rechargeable lithium-ion batteries, the development of electrode materials and their processing techniques remains a hot topic in academia and industry. Even the well-developed and widely utilized active materials present issues, such as surface reactivity, irreversible capacity in the first cycle, and ageing. Thus, there have been many efforts to modify the surface of active materials to enhance the electrochemical performance of the resulting electrodes and cells. Herein, we review the attempts to use polymer coatings on the anode active materials. This type of coating stands out because of the possibility of acting as an artificial solid electrolyte interphase (SEI), serving as an anode protective layer. We discuss the prominent examples of anodes with different mechanisms: intercalation (graphite and titanium oxides), alloy (silicon, tin, and germanium), and conversion (transition metal oxides) anodes. Finally, we give our perspective on the future developments in this field

    Characterization of Stressing Conditions in a High Energy Ball Mill by Discrete Element Simulations

    No full text
    The synthesis of sulfide solid electrolytes in ball mills by mechanochemical routes not only is efficient but also can enable the upscaling of material synthesis as required for the commercialization of solid-state battery materials. On a laboratory scale, the Emax high energy ball mill accounts for high stresses and power densities, as well as for temperature control, to prevent damage to the material and equipment even for long process times. To overcome the merely phenomenological treatment, we characterized the milling process in an Emax by DEM simulations, using the sulfide solid electrolyte LPS as a model material for the calibration of input parameters to the DEM, and compared it to a planetary ball mill for a selected parameter set. We derived mechanistic model equations for the stressing conditions depending on the operation parameters of rotational speed, media size and filling ratio. The stressing conditions are of importance as they determine the outcome of the mechanochemical milling process, thus forming the basis for evaluating and interpreting experiments and for establishing scaling rules for the process transfer to larger mills

    Insights into enhancing electrochemical performance of Li-ion battery anodes via polymer coating

    No full text
    Abstract Due to the ever-growing importance of rechargeable lithium-ion batteries, the development of electrode materials and their processing techniques remains a hot topic in academia and industry. Even the well-developed and widely utilized active materials present issues, such as surface reactivity, irreversible capacity in the first cycle, and ageing. Thus, there have been many efforts to modify the surface of active materials to enhance the electrochemical performance of the resulting electrodes and cells. Herein, we review the attempts to use polymer coatings on the anode active materials. This type of coating stands out because of the possibility of acting as an artificial solid electrolyte interphase (SEI), serving as an anode protective layer. We discuss the prominent examples of anodes with different mechanisms: intercalation (graphite and titanium oxides), alloy (silicon, tin, and germanium), and conversion (transition metal oxides) anodes. Finally, we give our perspective on the future developments in this field

    Optimized Morphology and Tuning the Mn<sup>3+</sup> Content of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> Cathode Material for Li-Ion Batteries

    No full text
    The advantages of cobalt-free, high specific capacity, high operating voltage, low cost, and environmental friendliness of spinel LiNi0.5Mn1.5O4 (LNMO) material make it one of the most promising cathode materials for next-generation lithium-ion batteries. The disproportionation reaction of Mn3+ leads to Jahn–Teller distortion, which is the key issue in reducing the crystal structure stability and limiting the electrochemical stability of the material. In this work, single-crystal LNMO was synthesized successfully by the sol-gel method. The morphology and the Mn3+ content of the as-prepared LNMO were tuned by altering the synthesis temperature. The results demonstrated that the LNMO_110 material exhibited the most uniform particle distribution as well as the presence of the lowest concentration of Mn3+, which was beneficial to ion diffusion and electronic conductivity. As a result, this LNMO cathode material had an optimized electrochemical rate performance of 105.6 mAh g−1 at 1 C and cycling stability of 116.8 mAh g−1 at 0.1 C after 100 cycles
    corecore