29 research outputs found

    Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis

    Get PDF
    AbstractCrystal structures of the DNA repair enzyme human uracil-DNA glycosylase (UDG), combined with mutational analysis, reveal the structural basis for the specificity of the enzyme. Within the classic α/β fold of UDG, sequence-conserved residues form a positively charged, active-site groove the width of duplex DNA, at the C-terminal edge of the central four-stranded parallel β sheet. In the UDG-6-aminouracil complex, uracil binds at the base of the groove within a rigid preformed pocket that confers selectivity for uracil over other bases by shape complementarity and by main chain and Asn-204 side chain hydrogen bonds. Main chain nitrogen atoms are positioned to stabilize the oxyanion intermediate generated by His-268 acting via nucleophilic attack or general base mechanisms. Specific binding of uracil flipped out from a DNA duplex provides a structural mechanism for damaged base recognition

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Structural and functional homology of parvovirus and papovavirus polypeptides

    No full text
    We have compared the sequences of the putative polypeptides of the human pathogenic B19 parvovirus with protein sequences in the National Bethesda Research Foundation Library, and have discovered a significant homology between a B19 parvovirus non-structural (NS) protein and the T antigens of polyomaviruses and simian virus 40 (SV40) and the putative E 1 proteins of papillomaviruses. The region of highest homology with the papovavirus proteins corresponds to the region that is most highly conserved in the NS1 proteins of several other parvoviruses. Studies with the T antigen of both polyomaviruses and SV40 have implicated this region as having an ATPase activity and nucleotide-binding function. The Parvoviridae are a family of small viruses with single-stranded, linear DNA genomes approximately 5000 nucleotides in length (Siegl, 1984). The two groups of vertebrate parvoviruses are the dependoviruses [e.g. adeno-associated virus (AAV)] which require a helper adenovirus or herpesvirus for replication, and the autonomously replicating parvoviruses [e.g. minute virus of mice (MVM), H-I] (Siegl, 1984). Human B19 virus, which has recently been characterized as a parvovirus (Summers et al., 1983; Cotmore & Tattersall, 1984), is th

    Switching on kinases: oncogenic activation of BRAF and the PDGFR family

    No full text
    The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors

    Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding

    No full text
    Human O(6)–alkylguanine-DNA alkyltransferase (AGT), which directly reverses endogenous alkylation at the O(6)-position of guanine, confers resistance to alkylation chemotherapies and is therefore an active anticancer drug target. Crystal structures of active human AGT and its biologically and therapeutically relevant methylated and benzylated product complexes reveal an unexpected zinc-stabilized helical bridge joining a two-domain α/β structure. An asparagine hinge couples the active site motif to a helix–turn–helix (HTH) motif implicated in DNA binding. The reactive cysteine environment, its position within a groove adjacent to the alkyl-binding cavity and mutational analyses characterize DNA-damage recognition and inhibitor specificity, support a structure-based dealkylation mechanism and suggest a molecular basis for destabilization of the alkylated protein. These results support damaged nucleotide flipping facilitated by an arginine finger within the HTH motif to stabilize the extrahelical O(6)–alkylguanine without the protein conformational change originally proposed from the empty Ada structure. Cysteine alkylation sterically shifts the HTH recognition helix to evidently mechanistically couple release of repaired DNA to an opening of the protein fold to promote the biological turnover of the alkylated protein

    The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites

    No full text
    The structure of the major human apurinic/ apyrimidinic endonuclease (HAP1) has been solved at 2.2 A resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extrahelical conformation, rather than a 'flipped-out' base opposite the AP site

    Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    No full text
    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-Ă… resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the Îł-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates
    corecore