70 research outputs found

    Artemisinin modulating effect on human breast cancer cell lines with different sensitivity to cytostatics

    No full text
    Aim: To explore effects of Artemisinin on a series of breast cancer cells with different sensitivity to typical cytotoxic drugs (doxorubicin — Dox; cisplatin — DDP) and to investigate possible artemisinin-induced modification of the mechanisms of drug resistance. Materials and Methods: The study was performed on wild-type breast cancer MCF-7 cell line (MCF-7/S) and its two sublines MCF-7/Dox and MCF-7/DDP resistant to Dox and DDP, respectively. The cells were treated with artemisinin and iron-containing magnetic fluid. The latter was added to modulate iron levels in the cells and explore its role in artemisinin-induced effects. The MTT assay was used to monitor cell viability, whereas changes of expression of selected proteins participating in regulation of cellular iron homeostasis were estimated using immunocytochemical methods. Finally, relative expression levels of miRNA-200b, -320a, and -34a were examined by using qRT-PCR. Results: Artemisinin affects mechanisms of the resistance of breast cancer cells towards both Dox and DDP at sub-toxic doses. The former drug induces changes of expression of iron-regulating proteins via different mechanisms, including epigenetic regulation. Particularly, the disturbances in ferritin heavy chain 1, lactoferrin, hepcidin (decrease) and ferroportin (increase) expression (р ≤ 0.05) were established. The most enhanced increase of miRNA expression under artemisinin influence were found for miRNA-200b in MCF-7/DDP cells (7.1 ± 0.98 fold change), miRNA-320a in MCF-7/Dox cells (2.9 ± 0.45 fold change) and miRNA-34a (1.7 ± 0.15 fold change) in MCF-7/S cells. It was observed that the sensitivity to artemisinin can be influenced by changing iron levels in cells. Conclusions: Artemisinin can modify iron metabolism of breast cancer cells by its cytotoxic effect, but also by inducing changes in expression of iron-regulating proteins and microRNAs (miRNAs), involved in their regulation. This modification affects the mechanisms that are implicated in drug-resistance, that makes artemisinin a perspective modulator of cell sensitivity towards chemotherapeutic agents in cancer treatment

    μ-Peroxido-bis­[acetonitrile­bis­(ethyl­enediamine)­cobalt(III)] tetrakis(per­chlorate)

    Get PDF
    The title compound, [Co2(O2)(CH3CN)2(C2H8N2)4](ClO4)4, consists of centrosymmetric binuclear cations and perchlorate anions. Two CoIII atoms, which have a slightly distorted octa­hedral coordination, are connected through a peroxido bridge; the O—O distance is 1.476 (3) Å. Both acetonitrile ligands are situated in a trans position with respect to the O—O bridge. In the crystal, the complex cations are connected by N—H⋯O hydrogen bonds between ethyl­endiamine NH groups and O atoms from the perchlorate anions and peroxide O atoms

    Diaquabis­[3-(hydroxy­imino)­butanoato]nickel(II)

    Get PDF
    In the neutral, mononuclear title complex, [Ni(C4H6NO3)2(H2O)2], the Ni atom lies on a crystallographic inversion centre within a distorted octa­hedral N2O4 environment. Two trans-disposed anions of 3-hydroxy­imino­butanoic acid occupy four equatorial sites, coordinated by the deprotonated carboxyl­ate and protonated oxime groups and forming six-membered chelate rings, while the two axial positions are occupied by the water O atoms. The O atom of the oxime group forms an intra­molecular hydrogen bond with the coordinated carboxyl­ate O atom. The complex mol­ecules are linked into chains along b by hydrogen bonds between the water O atom and the carboxyl­ate O of a neighbouring mol­ecule. The chains are linked by further hydrogen bonds into a layer structure

    Diaqua­bis­(pyridine-2-carboxyl­ato-κ2 N,O)manganese(II) dimethyl­formamide hemisolvate

    Get PDF
    There are two crystallographically independent complex mol­ecules with very similar geometries in the unit cell of the title compound, [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO. The central ion is situated in a distorted octa­hedral environment of two N- and four O-donor atoms from two pyridine-2-carboxyl­ate ligands and two cis-disposed water mol­ecules. The carboxyl­ate ligands are coordinated in a chelate fashion with the formation of two five-membered rings. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, thus forming hydrogen-bonded walls disposed perpendicularly to the bc plane

    Diaquabis­[3-(hydroxy­imino­)butanoato]nickel(II): a triclinic polymorph

    Get PDF
    The title centrosymmetric mononuclear complex, [Ni(C4H6NO3)2(H2O)2], is a polymorph of the previously reported complex [Dudarenko et al. (2010 ▶). Acta Cryst. E66, m277–m278]. The NiII atom, lying on an inversion center, is six-coordinated by two carboxyl­ate O atoms and two oxime N atoms from two trans-disposed chelating 3-hydroxy­imino­butanoate ligands and two axial water mol­ecules in a distorted octa­hedral geometry. The hydr­oxy group forms an intra­molecular hydrogen bond with the coordinated carboxyl­ate O atom. The complex mol­ecules are linked in stacks along [010] by a hydrogen bond between the water O atom and the carboxyl­ate O atom of a neighboring mol­ecule. The stacks are further linked by O—H⋯O hydrogen bonds into a layer parallel to (001)

    Pharmacological effect of aminoferrocene in mice with L1210 leukemia

    No full text
    Aim: To study the cytostatic and some biological effects of aminoferrocene using mice with L1210 lymphoid leukemia. Materials and Methods: Experiments were performed on BDF1 male mice (DBA/2, female × C57Bl/6, male) with transplantable L1210 lymphoid leukemia. Determination of antitumor activity of Benzyl-Fc Boron (Bn), it was injected intraperitoneally 6 times daily, starting on day 2 after L1210 leukemia cell transplantation. Doses of Bn such as 26; 260 and 2600 μg/kg were used. The determination of intracellular content of cardiolipin, thiols, reactive oxygen species (ROS) and also analysis of Annexin V positivity and mitochondrial transmembrane potential (JC-1 staining) were performed with use of flow cytometry. The levels of “free iron” complexes, transferrin active forms and the rate of NO generation were measured by EPR-specroscopy. Results: Six daily injections of Bn at a dose of 26 μg/kg resulted in an increased survival of mice with L1210 leukemia by 28% (p < 0.05). Bn led to an increase of apoptotic cells number and ROS amount in leukemia cells. Besides, Bn caused a decrease of cardiolipin and nonprotein thiol compounds content. The membrane electrochemical potential of cell mitochondria was decreased also after Bn administration. Studies using EPR-spectroscopy revealed a significant increase in a level of “free iron”, content of transferrin active species and generation rate of NO by inducible NO-synthase in L1210 cells after aminoferrocene administration. Conclusion: Our data indicate that Benzyl-Fc Boron can be promising candidate for realizing a new strategy of anticancer therapy with the use of ROS-inducing agents. Key Words: aminoferrocene, tumor, L1210 leukemia, mitochondria membrane electrochemical potential, cardiolipin, thiols, ROS, transferrin, NO-generation

    fac-Tris(pyridine-2-carboxyl­ato-κ2 N,O)cobalt(III)

    Get PDF
    In the title compound, [Co(C6H4NO2)3], the CoIII ion lies on a threefold rotation axis and is in a distorted octa­hedral environment defined by three N and three O donor atoms from three fac-disposed pyridine-2-carboxyl­ate ligands. The ligands are coordinated in a chelate fashion, forming three five-membered rings. In the crystal, translationally related complex molecules are organized into columns along [001] via C—H⋯O hydrogen bonds

    3,5-Dimethyl-4-nitroso-1H-pyrazole

    Get PDF
    In the unit cell of the title compound, C5H7N3O, there are two conformers (A and B) which differ in the position of the oxime group with respect to the protonated pyrazole nitro­gen (trans in the A conformer and cis in the B conformer) and in the geometric parameters. The oxime group exists in the nitroso form in both conformers. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into zigzag-like chains along the b axis

    Synthesis and monitored selection of 5'-nucleobase-capped oligodeoxyribonucleotides

    No full text
    corecore