53 research outputs found

    Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China: A molecular epidemiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate the molecular characteristics of isoniazid resistant <it>Mycobacterium tuberculosis </it>(MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB) in rural areas of eastern China.</p> <p>Methods</p> <p>A population-based epidemiological study was conducted in two rural counties of eastern China from 2004 to 2005. In total, 131 isoniazid resistant MTB isolates were molecularly characterized by DNA sequencing and genotyped by IS<it>6110 </it>restriction fragment length polymorphism (RFLP) and spoligotyping.</p> <p>Results</p> <p>The <it>katG</it>315Thr mutation was observed in 74 of 131 isoniazid resistant isolates and more likely to be MDR-TB (48.6%) and have mutations in <it>rpoB </it>gene (47.3%). Spoligotyping identified 80.2% of isoniazid resistant MTB isolates as belonging to the Beijing family. Cluster analysis by genotyping based on IS<it>6110 </it>RFLP, showed that 48.1% isoniazid resistant isolates were grouped into 26 clusters and <it>katG</it>315Thr mutants had a significantly higher clustering proportion compared to those with <it>katG </it>wild type (73%.vs.18%; OR, 12.70; 95%CI, 6.357-14.80). Thirty-one of the 53 MDR-TB isolates were observed in 19 clusters. Of these clusters, isoniazid resistance in MDR-TB isolates was all due to the <it>katG</it>315Thr mutation; 18 clusters also contained mono-isoniazid resistant and other isoniazid resistant isolates.</p> <p>Conclusions</p> <p>These results highlighted that isoniazid resistant MTB especially with <it>katG</it>315Thr is likely to be clustered in a community, develop extra resistance to rifampicin and become MDR-TB in Chinese rural settings.</p

    Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little information is available on the molecular epidemiology in Mexico of <it>Mycobacterium </it>species infecting extrapulmonary sites in humans. This study used molecular methods to determine the <it>Mycobacterium </it>species present in tissues and body fluids in specimens obtained from patients in Mexico with extrapulmonary disease.</p> <p>Methods</p> <p>Bacterial or tissue specimens from patients with clinical or histological diagnosis of extrapulmonary tuberculosis were studied. DNA extracts from 30 bacterial cultures grown in Löwenstein Jensen medium and 42 paraffin-embedded tissues were prepared. Bacteria were cultured from urine, cerebrospinal fluid, pericardial fluid, gastric aspirate, or synovial fluid samples. Tissues samples were from lymph nodes, skin, brain, vagina, and peritoneum. The DNA extracts were analyzed by PCR and by line probe assay (INNO-LiPA MYCOBACTERIA v2. Innogenetics NV, Gent, Belgium) in order to identify the <it>Mycobacterium </it>species present. DNA samples positive for <it>M. tuberculosis </it>complex were further analyzed by PCR and line probe assay (INNO-LiPA Rif.TB, Innogenetics NV, Gent, Belgium) to detect mutations in the <it>rpo</it>B gene associated with rifampicin resistance.</p> <p>Results</p> <p>Of the 72 DNA extracts, 26 (36.1%) and 23 (31.9%) tested positive for <it>Mycobacterium species </it>by PCR or line probe assay, respectively. In tissues, <it>M. tuberculosis </it>complex and <it>M. genus </it>were found in lymph nodes, and <it>M. genus </it>was found in brain and vagina specimens. In body fluids, <it>M. tuberculosis </it>complex was found in synovial fluid. <it>M. gordonae</it>, <it>M. smegmatis</it>, <it>M. kansasii</it>, <it>M. genus</it>, <it>M. fortuitum/M. peregrinum </it>complex and <it>M. tuberculosis </it>complex were found in urine. <it>M. chelonae/M. abscessus </it>was found in pericardial fluid and <it>M. kansasii </it>was found in gastric aspirate. Two of <it>M. tuberculosis </it>complex isolates were also PCR and LiPA positive for the <it>rpo</it>B gene. These two isolates were from lymph nodes and were sensitive to rifampicin.</p> <p>Conclusion</p> <p>1) We describe the <it>Mycobacterium </it>species diversity in specimens derived from extrapulmonary sites in symptomatic patients in Mexico; 2) Nontuberculous mycobacteria were found in a considerable number of patients; 3) Genotypic rifampicin resistance in <it>M. tuberculosis </it>complex infections in lymph nodes was not found.</p

    Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a major cause of serious infections in hospitals and in the community worldwide. In this study, MRSA isolated from patients in Kuwait hospitals were analyzed for resistance trends and the genetic location of their resistance determinants. METHODS: Between April 1994 and December 2004, 5644 MRSA isolates obtained from different clinical samples were studied for resistance to antibacterial agents according to guidelines from the National Committee for Clinical Laboratory Standards and the British Society for Antimicrobial Chemotherapy. The genetic location of their resistance determinants was determined by curing and transfer experiments. RESULTS: They were resistant to aminoglycosides, erythromycin, tetracycline, trimethoprim, fusidic acid, ciprofloxacin, chloramphenicol, rifampicin, mupirocin, cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide but susceptible to vancomycin, teicoplanin and linezolid. The proportion of the isolates resistant to erythromycin, ciprofloxacin and fusidic acid increased during the study period. In contrast, the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined. High-level mupirocin resistance increased rapidly from 1996 to 1999 and then declined. They contained plasmids of 1.9, 2.8, 3.0, 4.4, 27 and 38 kilobases. Genetic studies revealed that they carried plasmid-borne resistance to high-level mupirocin resistance (38 kb), chloramphenicol (2.8 – 4.4 kb), erythromycin (2.8–3.0 kb) and cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide (27 kb) and chromosomal location for methicillin, the aminoglycosides, tetracycline, fusidic acid, ciprofloxacin and trimethoprim resistance. Thus, the 27 kb plasmids had resistance phenotypes similar to plasmids reported in MRSA isolates in South East Asia. CONCLUSION: The prevalence of resistance to erythromycin, ciprofloxacin, high-level mupirocin and fusidic acid increased whereas the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined during the study period. They contained 27-kb plasmids encoding resistance to cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide similar to plasmids isolated in MRSA from South East Asia. Molecular typing of these isolates will clarify their relationship to MRSA from South East Asia

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence

    Candida dubliniensis: An Appraisal of Its Clinical Significance as a Bloodstream Pathogen

    Get PDF
    A nine-year prospective study (2002–2010) on the prevalence of Candida dubliniensis among Candida bloodstream isolates is presented. The germ tube positive isolates were provisionally identified as C. dubliniensis by presence of fringed and rough colonies on sunflower seed agar. Subsequently, their identity was confirmed by Vitek2 Yeast identification system and/or by amplification and sequencing of the ITS region of rDNA. In all, 368 isolates were identified as C. dubliniensis; 67.1% came from respiratory specimens, 11.7% from oral swabs, 9.2% from urine, 3.8% from blood, 2.7% from vaginal swabs and 5.4% from other sources. All C. dubliniensis isolates tested by Etest were susceptible to voriconazole and amphotericin B. Resistance to fluconazole (≄8 ”g/ml) was observed in 2.5% of C. dubliniensis isolates, 7 of which occurred between 2008–2010. Of note was the diagnosis of C. dubliniensis candidemia in 14 patients, 11 of them occurring between 2008–2010. None of the bloodstream isolate was resistant to fluconazole, while a solitary isolate showed increased MIC to 5-flucytosine (>32 ”g/ml) and belonged to genotype 4. A review of literature since 1999 revealed 28 additional cases of C. dubliniensis candidemia, and 167 isolates identified from blood cultures since 1982. In conclusion, this study highlights a greater role of C. dubliniensis in bloodstream infections than hitherto recognized

    Insights into Candida tropicalis nosocomial infections and virulence factors

    Get PDF
    Candida tropicalis is considered the first or the second non-Candida albicans Candida (NCAC) species most frequently isolated from candidosis, mainly in patients admitted in intensive care units (ICUs), especially with cancer, requiring prolonged catheterization, or receiving broad-spectrum antibiotics. The proportion of candiduria and candidemia caused by C. tropicalis varies widely with geographical area and patient group. Actually, in certain countries, C. tropicalis is more prevalent, even compared with C. albicans or other NCAC species. Although prophylactic treatments with fluconazole cause a decrease in the frequency of candidosis caused by C. tropicalis, it is increasingly showing a moderate level of fluconazole resistance. The propensity of C. tropicalis for dissemination and the high mortality associated with its infections might be strongly related to the potential of virulence factors exhibited by this species, such as adhesion to different host surfaces, biofilm formation, infection and dissemination, and enzymes secretion. Therefore, the aim of this review is to outline the present knowledge on all the above-mentioned C. tropicalis virulence traits.The authors acknowledge Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil, for supporting Melyssa Negri (BEX 4642/06-6) and Fundacao para a Ciencia e Tecnologia (FCT), Portugal, for supporting Sonia Silva (SFRH/BPD/71076/2010), and European Community fund FEDER, trough Program COMPETE under the Project FCOMP-01-0124-FEDER-007025 (PTDC/AMB/68393/2006) is gratefully acknowledged

    Evaluation of the performance of 2 DNA-based methods for the detection of extra-pulmonary tuberculosis in comparison with the conventional culture technique

    Get PDF
    Introduction: Diagnosing extra-pulmonary tuberculosis continues to be a challenge for both infectious disease specialists and microbiologists. Objectives: This prospective study was done to evaluate the performance of two DNA-based methods for the detection of extra-pulmonary tuberculosis in comparison with the conventional culture technique. Methods: All extra-pulmonary specimens received by the Kuwait National Tuberculosis Reference from October 2011 until August 2013 were included in the study. Smears were stained by Ziehl Neelson (Merck, Germany) followed by inoculation of the specimens into GeneXpert MTB/RIF assay (Cepheid, USA), ProbTec ET PCR (Becton Dickinson) and MGIT 960 (Becton Dickinson). Urine was inoculated into Lowenstein Jensen media (MAST). Results: A total of 1674 extra-pulmonary specimens (pleural fluid 553, ascetic fluid 194, cerebrospinal fluid [CSF] 85, Urine 67, other sterile body fluids 153, fine needle aspirates [FNA] 301, pus 181, tissue 102, swabs 27 and stool 11) were evaluated. Out of 155 extra-pulmonary specimens that grew Mycobacterium tuberculosis (MTB) by culture, 143 were positive by GeneXpert compared with 128 by ProbTec with a sensitivity of 92% and 83%, respectively. Out of 1517 specimens that did not grow by culture, 52 were detected by GeneXpert while 46 were detected by ProbTec with specificity of 96.5% and 96.9%, respectively. All the 4 smear-negative CSF samples which grew MTB were positive by GeneXpert with a sensitivity of 100% compared with only 2 detected by ProbTec with a sensitivity of 50%. Additionally, all CSF specimens that did not grow by culture were negative by both the molecular methods showing 100% specificity. Of the 3 smear-positive urine specimens that grew by culture, all were positive, and of the 64 samples that did not grow by culture, all were negative by both the molecular methods with a sensitivity and specificity of 100%. For other sterile body fluids the sensitivity and specificity of both the methods were 68% and 99%, respectively. Finally, for FNA, pus and tissue, the sensitivity of GeneXpert was 97% compared with 86% for ProbTec. Conclusion: DNA-based technology looks promising for the rapid diagnosis of extra-pulmonary tuberculosis with an overall better performance of GeneXpert over ProbTec
    • 

    corecore