2,116 research outputs found
Non-ancient solution of the Ricci flow
For any complete noncompact Khler manifold with nonnegative and
bounded holomorphic bisectional curvature,we provide the necessary and
sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil
Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with complex genetic inheritance. Recently, single nucleotide polymorphisms (SNPs) in BANK1 and TNFSF4 have been shown to be associated with SLE in Caucasian populations, but it is not known whether they are also involved in the disease in other ethnic groups. Recent data from our genome-wide association study (GWAS) for 314 SLE cases and 920 controls collected in Hong Kong identified SNPs in and around BANK1 and TNFSF4 to be associated with SLE risk. On the basis of the results of the reported studies and our GWAS, SNPs were selected for further genotyping in 949 SLE patients (overlapping with the 314 cases in our GWAS) and non-overlapping 1042 healthy controls. We confirmed the associations of BANK1 and TNFSF4 with SLE in Chinese (BANK1, rs3733197, odds ratio (OR)=0.84, P=0.021; BANK1, rs17266594, OR=0.61, P=4.67 × 10−9; TNFSF4, rs844648, OR=1.22, P=2.47 × 10−3; TNFSF4, rs2205960, OR=1.30, P=2.41 × 10−4). Another SNP located in intron 1 of BANK1, rs4522865, was separately replicated by Sequenom in 360 cases and 360 controls and was also confirmed to be associated with SLE (OR=0.725, P=2.93 × 10−3). Logistic regression analysis showed that rs3733197 (A383T in ankyrin domain) and rs17266594 (a branch point-site SNP) from BANK1 had independent contributions towards the disease association (P=0.037 and 6.63 × 10−8, respectively). In TNFSF4, rs2205960 was associated with SLE independently from the effect of rs844648 (P=6.26 × 10−3), but not vice versa (P=0.55). These findings suggest that multiple independent genetic variants may be present within the gene locus, which exert their effects on SLE pathogenesis through different mechanisms
Characterization of prion disease associated with a two-octapeptide repeat insertion
Genetic prion disease accounts for 10–15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt–Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt–Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt–Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt–Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk
X-ray absorption spectroscopy (XAS) investigation of the electronic structure of superconducting FeSex single crystals
X-ray absorption spectroscopy (XAS) Fe K-edge spectra of the FeSex (x=1-0.8)
single crystals cleaved in situ in vacuum reveal characteristic Fe 4sp states,
a lattice distortion and the Se K-edge spectra point to a strong Fe 3d-Se 4p
hybridization giving rise to itinerant charge carriers. A formal charge of
~1.8+ for Fe and ~2.2- for Se were evaluated from these spectra in the FeSex
(x=0.88). The charge balance between Fe and Se is assigned itinerant electrons
located in the Fe-Se hybridization bond. As x decreases the 4p hole count
increases and a crystal structure distortion is observed that in turn causes
the Fe separation in the ab plane change from 4p orbital to varying
(modulating) coordination. Powder x-ray diffraction (XRD) measurements also
show a slight increase in lattice parameters as x decreases (increasing Se
deficiency)
The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication
Host-adaptive strategies, such as the E627K substitution in the PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity. PB2-526R also enhances viral transcription and replication in cells. In comparison with viruses carrying 627K, H7N9 viruses carrying both 526R and 627K replicate more efficiently in mammalian (but not avian) cells and in mouse lung tissues, and cause greater body weight loss and mortality in infected mice. PB2-K526R interacts with nuclear export protein and our results suggest that it contributes to enhance replication for certain influenza virus subtypes, particularly in combination with 627K.published_or_final_versio
Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder.
Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems. We use a quantum autoencoder in a compress-teleport-decompress manner and report the first demonstration with qutrits using an integrated photonic platform for future scalability. The key strategy is to compress the dimensionality of input states by erasing redundant information and recover the initial states after chip-to-chip teleportation. Unsupervised machine learning is applied to train the on-chip autoencoder, enabling the compression and teleportation of any state from a high-dimensional subspace. Unknown states are decompressed at a high fidelity (~0.971), obtaining a total teleportation fidelity of ~0.894. Subspace encodings hold great potential as they support enhanced noise robustness and increased coherence. Laying the groundwork for machine learning techniques in quantum systems, our scheme opens previously unidentified paths toward high-dimensional quantum computing and networking
Global Networks of Trade and Bits
Considerable efforts have been made in recent years to produce detailed
topologies of the Internet. Although Internet topology data have been brought
to the attention of a wide and somewhat diverse audience of scholars, so far
they have been overlooked by economists. In this paper, we suggest that such
data could be effectively treated as a proxy to characterize the size of the
"digital economy" at country level and outsourcing: thus, we analyse the
topological structure of the network of trade in digital services (trade in
bits) and compare it with that of the more traditional flow of manufactured
goods across countries. To perform meaningful comparisons across networks with
different characteristics, we define a stochastic benchmark for the number of
connections among each country-pair, based on hypergeometric distribution.
Original data are thus filtered by means of different thresholds, so that we
only focus on the strongest links, i.e., statistically significant links. We
find that trade in bits displays a sparser and less hierarchical network
structure, which is more similar to trade in high-skill manufactured goods than
total trade. Lastly, distance plays a more prominent role in shaping the
network of international trade in physical goods than trade in digital
services.Comment: 25 pages, 6 figure
On-disk coronal rain
Small and elongated, cool and dense blob-like structures are being reported
with high resolution telescopes in physically different regions throughout the
solar atmosphere. Their detection and the understanding of their formation,
morphology and thermodynamical characteristics can provide important
information on their hosting environment, especially concerning the magnetic
field, whose understanding constitutes a major problem in solar physics. An
example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium
observed in active region loops, which consists of cool and dense chromospheric
blobs falling along loop-like paths from coronal heights. So far, only off-limb
coronal rain has been observed and few reports on the phenomenon exist. In the
present work, several datasets of on-disk H{\alpha} observations with the CRisp
Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are
analyzed. A special family of on-disk blobs is selected for each dataset and a
statistical analysis is carried out on their dynamics, morphology and
temperatures. All characteristics present distributions which are very similar
to reported coronal rain statistics. We discuss possible interpretations
considering other similar blob-like structures reported so far and show that a
coronal rain interpretation is the most likely one. Their chromospheric nature
and the projection effects (which eliminate all direct possibility of height
estimation) on one side, and their small sizes, fast dynamics, and especially,
their faint character (offering low contrast with the background intensity) on
the other side, are found as the main causes for the absence until now of the
detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
- …