48 research outputs found
Idebenone and Resveratrol Extend Lifespan and Improve Motor Function of HtrA2 Knockout Mice
Heterozygous loss-of-function mutation of the human gene for the mitochondrial protease HtrA2 has been associated with increased risk to develop mitochondrial dysfunction, a process known to contribute to neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). Knockout of HtrA2 in mice also leads to mitochondrial dysfunction and to phenotypes that resemble those found in neurodegenerative disorders and, ultimately, lead to death of animals around postnatal day 30. Here, we show that Idebenone, a synthetic antioxidant of the coenzyme Q family, and Resveratrol, a bioactive compound extracted from grapes, are both able to ameliorate this phenotype. Feeding HtrA2 knockout mice with either compound extends lifespan and delays worsening of the motor phenotype. Experiments conducted in cell culture and on brain tissue of mice revealed that each compound has a different mechanism of action. While Idebenone acts by downregulating the integrated stress response, Resveratrol acts by attenuating apoptosis at the level of Bax. These activities can account for the delay in neuronal degeneration in the striata of these mice and illustrate the potential of these compounds as effective therapeutic approaches against neurodegenerative disorders such as HD or PD
dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective.
Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM
Novel Mitochondrial Substrates of Omi Indicate a New Regulatory Role in Neurodegenerative Disorders
The mitochondrial protease OMI (also known as HtrA2) has been implicated in Parkinson's Disease (PD) and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit) did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH) are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I) showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism
Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells
Background: Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Impairment of the mitochondrial electron transport chain (ETC) and an increased frequency in deletions of mitochondrial DNA (mtDNA), which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.Methodology/Principal Findings: In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.Conclusions: This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease
Mitochondrial respiratory states and rate
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Dose and dose rate dependency of lipid peroxide formation in rat tissues by low level contamination with tritiated water
The changes in peroxide level in different tissues (liver, kidney, small intestine, spleen, bone marrow) of rats exposed to low levels of tritiated water were investigated in relation to tissue
radiosensitivity, the irradiation dose and the dose rate domain. The radiation exposure was performed by internal contamination of rats with tritiated water, in the 0 – 50 cGy dose domain, with
dose rates in the range of 0.01 – 2 cGy/day. For the lower dose rates (< 0.35 cGy/day) the peroxide levels did not increase for doses up to 10 cGy, while a dose rate of 1–1.75 cGy/day induced an
increase in peroxide levels starting at 5 cGy. The increases were more significant for the tissues with higher radiosensitivity: spleen, small intestine and bone marrow. For the 4.2–7 cGy dose
domain and very low dose rates, up to 0.1 cGy/day, the peroxide level seemed to have an inverse dose rate dependency
Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes.
MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types
Cellular effects produced by internal contamination of rats with tritiated water
The activity of the erythrocyte glucose-6-phosphate dehydrogenase (G6PDH) and the thymidine (TdR) incorporation in the bone marrow cells have been investigated in rats internally
contaminated with tritiated water (HTO). The total doses (4.2 cGy; 19.4 cGy and respectively 5 cGy; 20 cGy) were delivered as chronic (100 days) and acute (5 days) contamination. It was
observed a significant increase of Glucose-6-Phosphate- Dehydrogenase (G6PDH) activity for 4.2 cGy (0.4 mGy/day). Both types of contamination produced the reduced incorporation of TdR in
the bone marrow cells. These results would allow us to speculate that the reduction of the TdR incorporation could be determined by the changes at the level of membrane transport functions for
the lower doses (4.2 cGy; 5 cGy), and by radiation induced phenomena at the intracellular level for the larger doses (19.4 cGy; 20 cGy)