44 research outputs found

    HIV infection is associated with elevated biomarkers of immune activation in Ugandan adults with pneumonia.

    Get PDF
    IntroductionPneumonia is an important cause of morbidity and mortality in persons living with human immunodeficiency virus (HIV) infection. How immune activation differs among HIV-infected and HIV-uninfected adults with pneumonia is unknown.MethodsThe Inflammation, Aging, Microbes, and Obstructive Lung Disease (I AM OLD) Cohort is a prospective cohort of adults with pneumonia in Uganda. In this cross-sectional analysis, plasma was collected at pneumonia presentation to measure the following 12 biomarkers: interleukin 6 (IL-6), soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1 and sTNFR-2), high sensitivity C-reactive protein (hsCRP), fibrinogen, D-dimer, soluble CD27 (sCD27), interferon gamma-inducible protein 10 (IP-10), soluble CD14 (sCD14), soluble CD163 (sCD163), hyaluronan, and intestinal fatty acid binding protein. We asked whether biomarker levels differed between HIV-infected and HIV-uninfected participants, and whether higher levels of these biomarkers were associated with mortality.ResultsOne hundred seventy-three participants were enrolled. Fifty-three percent were HIV-infected. Eight plasma biomarkers-sTNFR-1, sTNFR-2, hsCRP, D-dimer, sCD27, IP-10, sCD14, and hyaluronan-were higher among participants with HIV infection, after adjustment for pneumonia severity. Higher levels of 8 biomarkers-IL-6, sTNFR-1, sTNFR-2, hsCRP, IP-10, sCD14, sCD163, and hyaluronan-were associated with increased 2-month mortality.ConclusionsAs in other clinical contexts, HIV infection is associated with a greater degree of immune activation among Ugandan adults with pneumonia. Some of these are also associated with short-term mortality. Further study is needed to explore whether these biomarkers might predict poor long-term outcomes-such as the development of obstructive lung disease-in patients with HIV who have recovered from pneumonia

    Association of soluble markers of inflammation with peri-coronary artery inflammation in people with and without HIV infection and without cardiovascular disease

    Get PDF
    BACKGROUND: Inflammation is linked to elevated cardiovascular disease (CVD) risk in people with HIV (PWH) on antiretroviral therapy (ART). Fat attenuation index (FAI) is a measure of peri-coronary inflammation that independently predicts CVD risk in HIV-uninfected persons. Whether FAI is associated with soluble inflammatory markers is unknown. METHODS: Plasma levels of inflammatory markers were measured in 58 PWH and 16 controls without current symptoms or prior known CVD who underwent coronary computed tomography angiography and had FAI measurements. A cross-sectional analysis was performed, and associations of markers with FAI values of the right coronary artery (RCA) and left anterior descending artery (LAD) were assessed using multivariable regression models adjusted for the potential confounders age, sex, race, low-density lipoprotein cholesterol, body mass index, and use of lipid-lowering medication. RESULTS: Several inflammatory markers had significant associations with RCA or LAD FAI in adjusted models, including sCD14, sCD163, TNFR-I, and TNFR-II, CCL5, CX3CL1, IP-10. CONCLUSIONS: The associations between indices of systemic and peri-coronary inflammation are novel and suggest that these systemic markers and FAI together are promising noninvasive biomarkers that can be applied to assess asymptomatic CVD in people with and without HIV; they also may be useful tools to evaluate effects of anti-inflammatory interventions

    Methotrexate Inhibits T Cell Proliferation but Not Inflammatory Cytokine Expression to Modulate Immunity in People Living With HIV

    Get PDF
    Inflammation associated with increased risk of comorbidities persists in people living with HIV (PWH) on combination antiretroviral therapy (ART). A recent placebo-controlled trial of low-dose methotrexate (MTX) in PWH found that numbers of total CD4 and CD8 T cells decreased in the low-dose MTX arm. In this report we analyzed T cell phenotypes and additional plasma inflammatory indices in samples from the trial. We found that cycling (Ki67+) T cells lacking Bcl-2 were reduced by MTX but plasma inflammatory cytokines were largely unaffected. In a series of in vitro experiments to further investigate the mechanisms of MTX activity, we found that MTX did not inhibit effector cytokine production but inhibited T cell proliferation downstream of mTOR activation, mitochondrial function, and cell cycle entry. This inhibitory effect was reversible with folinic acid, suggesting low-dose MTX exerts anti-inflammatory effects in vivo in PWH largely by blocking T cell proliferation via dihydrofolate reductase inhibition, yet daily administration of folic acid did not rescue this effect in trial participants. Our findings identify the main mechanism of action of this widely used anti-inflammatory medicine in PWH and may provide insight into how MTX works in the setting of other inflammatory conditions

    A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

    Get PDF
    Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1

    Pressure of Zidovudine Accelerates the Reversion of Lamivudine Resistance-Conferring M184V Mutation in the Reverse Transcriptase of Human Immunodeficiency Virus Type 1

    No full text
    We cultured lamivudine-resistant human immunodeficiency virus type 1 (HIV-1) variants over an extended period of time in the presence of zidovudine and observed a premature reversion of the resistance-conferring M184V mutation. These data suggest that the presence of ZDV amplifies differences in replication capacity between wild-type HIV-1 and the mutant variant

    Molecular characterization of the development of the K65R and M184V drug resistance mutations in Subtype C HIV-1s

    No full text
    Background: We have shown that the K65R mutation is selected more rapidly in subtype C than in subtype B HIV-1 isolates in both cell culture and clinical studies. Biochemical comparisons between subtype B and C-derived reverse transcriptase (RT) enzymes revealed similar molecular characteristics that do not explain the more rapid selection of K65R with subtype C viruses. This study attempts to establish the mechanistic basis for the difference. Methods: Recombinant subtype C and B HIV-1 RT enzymes were expressed and purified in E. coli. Gel-based nucleotide extension assays were used to study DNA synthesis from various natural and synthetic DNA and RNA templates that spanned regions of the pol gene responsible for the K65R and M184V mutations. Cell based experiments were performed using MT2 cells infected with mutated subtype B HIV-1 pNL4-3 viruses. Results: The propensity for the more rapid selection of K65R with subtype C enzymes is due to the mechanism of DNA synthesis from a subtype C template. The use of templates containing the 64, 65 and 66 codons of the pol gene led to different patterns of DNA synthesis. When subtype C RT was employed to synthesize DNA from subtype C templates, preferential pausing was seen at the nucleotide position responsible for the AAG to AGG mutation on codon 65 which gives rise to K65R. In contrast, the use of subtype B RT together with a subtype B template reveals a different pattern of DNA synthesis. When subtype B RT was employed with a subtype C template, DNA synthesis stopped at the exact nucleotide position responsible for K65R. This phenomenon was not observed when subtype C RT was used with a subtype B template. A similar method was employed to investigate if differences exist in the appearance of M184V between subtypes. The results suggest that M184V is not favoured due to its coding sequence and that the propensity for the development of M184V remains the same in subtype B and C HIV. In cell culture, K65R was detected faster in subtype B that has been mutated to include the 64/65 codons of subtype C, when compared to wild-type subtype B HIV. Conclusions: The more rapid emergence of K65R but not M184V in subtype C RT appears to be based on the pol gene coding sequence. These results urge for the analysis of resistance mechanisms to be studied in all HIV subtypes separately and have clinical relevance in regard to the management of subtype C infections
    corecore