167 research outputs found

    A 2022 Ο„\tau-Herculid meteor cluster from an airborne experiment: automated detection, characterization, and consequences for meteoroids

    Full text link
    Context. The existence of meteor clusters has long since been a subject of speculation and so far only seven events have been reported, among which two involve less than five meteors, and three were seen during the Leonid storms. Aims. The 1995 outburst of Comet 73P/Schwassmann-Wachmann was predicted to result in a meteor shower in May 2022. We detected the shower, proved this to be the result of this outburst, and detected another meteor cluster during the same observation mission. Methods. The {\tau}-Herculids meteor shower outburst on 31 May 2022 was continuously monitored for 4 hours during an airborne campaign. The video data were analyzed using a recently developed computer-vision processing chain for meteor real-time detection. Results. We report and characterize the detection of a meteor cluster involving 38 fragments, detected at 06:48 UT for a total duration of 11.3 s. The derived cumulative size frequency distribution index is relatively shallow: s = 3.1. Our open-source computer-vision processing chain (named FMDT) detects 100% of the meteors that a human eye is able to detect in the video. Classical automated motion detection assuming a static camera was not suitable for the stabilized camera setup because of residual motion. Conclusions. From all reported meteor clusters, we crudely estimate their occurrence to be less than one per million observed meteors. Low heliocentric distance enhances the probability of such meteoroid self-disruption in the interplanetary space.Comment: 6 pqges, 5 figure

    Immune Tolerance by Induced Regulatory T Cells in Asthma

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens

    State‐of‐the‐art in marketed adjuvants and formulations in Allergen Immunotherapy: a position paper of the European Academy of Allergy and Clinical Immunology (EAACI)

    Full text link
    Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre‐existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is pre‐sensitized to the allergen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilised in AIT redirect the Th2 immune response toward Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three‐to‐five‐year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need

    Activation of natural regulatory T cells by IgG Fc-derived peptide Tregitopes

    Get PDF
    We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4+CD25HiFoxP3+ natural regulatory T cells (nTRegs). Coincubation of these regulatory T-cell epitopes or β€œTregitopes” and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with TRegs such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nTRegs that tips the resulting immune response toward tolerance rather than immunogenicity

    Systemic and Mucosal Immune Responses to Sublingual or Intramuscular Human Papilloma Virus Antigens in Healthy Female Volunteers

    Get PDF
    The sublingual route has been proposed as a needle-free option to induce systemic and mucosal immune protection against viral infections. In a translational study of systemic and mucosal humoral immune responses to sublingual or systemically administered viral antigens, eighteen healthy female volunteers aged 19–31 years received three immunizations with a quadravalent Human Papilloma Virus vaccine at 0, 4 and 16 weeks as sublingual drops (SL, nβ€Š=β€Š12) or intramuscular injection (IM, nβ€Š=β€Š6). IM antigen delivery induced or boosted HPV-specific serum IgG and pseudovirus-neutralizing antibodies, HPV-specific cervical and vaginal IgG, and elicited circulating IgG and IgA antibody secreting cells. SL antigens induced ∼38-fold lower serum and ∼2-fold lower cervical/vaginal IgG than IM delivery, and induced or boosted serum virus neutralizing antibody in only 3/12 subjects. Neither route reproducibly induced HPV-specific mucosal IgA. Alternative delivery systems and adjuvants will be required to enhance and evaluate immune responses following sublingual immunization in humans

    Prevention of Birch Pollen-Related Food Allergy by Mucosal Treatment with Multi-Allergen-Chimers in Mice

    Get PDF
    Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery) or Dau c 1 (carrot), termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy.BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization.Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent Ξ²-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-Ξ³ levels were increased. Immunomodulation was associated with increased IL-10, TGF-Ξ² and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-Ξ², anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer.Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy

    Evaluation of the Sublingual Route for Administration of Influenza H5N1 Virosomes in Combination with the Bacterial Second Messenger c-di-GMP

    Get PDF
    Avian influenza A H5N1 is a virus with pandemic potential. Mucosal vaccines are attractive as they have the potential to block viruses at the site of entry, thereby preventing both disease and further transmission. The intranasal route is safe for the administration of seasonal live-attenuated influenza vaccines, but may be less suitable for administration of pandemic vaccines. Research into novel mucosal routes is therefore needed. In this study, a murine model was used to compare sublingual administration with intranasal and intramuscular administration of influenza H5N1 virosomes (2 Β΅g haemagglutinin; HA) in combination with the mucosal adjuvant (3β€²,5β€²)-cyclic dimeric guanylic acid (c-di-GMP). We found that sublingual immunisation effectively induced local and systemic H5N1-specific humoral and cellular immune responses but that the magnitude of response was lower than after intranasal administration. However, both the mucosal routes were superior to intramuscular immunisation for induction of local humoral and systemic cellular immune responses including high frequencies of splenic H5N1-specific multifunctional (IL-2+TNF-Ξ±+) CD4+ T cells. The c-di-GMP adjuvanted vaccine elicited systemic haemagglutination inhibition (HI) antibody responses (geometric mean titres β‰₯40) both when administered sublingually, intranasally and inramuscularly. In addition, salivary HI antibodies were elicited by mucosal, but not intramuscular vaccination. We conclude that the sublingual route is an attractive alternative for administration of pandemic influenza vaccines

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy
    • …
    corecore