46 research outputs found

    Contributions à l'amélioration de la performance statique des réseaux T & D intégrés en présence des REDs

    Get PDF
    Avec la croissance des nouvelles technologies Ă©mergentes dans les rĂ©seaux de distribution, tels que les Ă©oliennes, les panneaux solaires, les vĂ©hicules Ă©lectriques et les sources de gĂ©nĂ©ration distribuĂ©es, la nĂ©cessitĂ© d'Ă©tudier simultanĂ©ment les rĂ©seaux de transmission et de distribution (T&D) et leurs interactions bilatĂ©rales ne peut plus ĂȘtre nĂ©gligĂ©e. Une forte pĂ©nĂ©tration des sources d'Ă©nergie renouvelable, naturellement stochastiques, peut inverser le flux d'Ă©nergie, ce qui ne rentre pas dans le paradigme d’un Ă©coulement de puissance Ă  flux descendant qui caractĂ©rise les systĂšmes d'alimentation conventionnels. Par consĂ©quent, les mĂ©thodes d'Ă©tude de rĂ©seaux telles que le fux de puissance optimal (Optimal Power Flow), l'engagement des groupes de production (unit commitment) et l'analyse de la stabilitĂ© doivent ĂȘtre revisitĂ©es. Cette thĂšse propose l'application de systĂšmes de stockage d'Ă©nergie sur batterie (BESS) dans un cadre intĂ©grĂ© de T&D minimisant les impacts nĂ©gatifs des Ă©nergies renouvelables insĂ©rĂ©es dans le rĂ©seau de distribution ou chez le client. Les BESS peuvent ĂȘtre interprĂ©tĂ©s comme des Ă©quipements flexibles supplĂ©mentaires, contrĂŽlĂ©s Ă  distance et/ou localement, qui absorbent ou libĂšrent des puissances actives et rĂ©actives et amĂ©liorent l'efficacitĂ© globale du systĂšme T&D au complet du point de vue de la stabilitĂ© et de la performance dynamique. Selon la pratique courante, les Ă©tudes des systĂšmes T&D intĂ©grĂ©s peuvent ĂȘtre classĂ©es en sous-groupes d’études dynamiques vs stationnaires ou en sous-groupes d’études de cooptimisation vs co-simulation. Suivant la mĂȘme approche, l’analyse Ă  l’état d’équilibre est d’abord lancĂ©e par un nouvel outil d’allocation optimisĂ©e stochastique de BESS (VSCSOBA) Ă  contrainte de stabilitĂ© de tension. L'outil d'optimisation dĂ©veloppĂ© basĂ© sur GAMS Ă  deux niveaux prend en compte les BESS et des modĂšles dĂ©taillĂ©s de ressources Ă©nergĂ©tiques distribuĂ©es stochastiques tout en minimisant principalement les pertes de puissance active, mais les Ă©carts de tension, les coĂ»ts de dĂ©lestage, l'augmentation de la capacitĂ© de charge (chargeabilitĂ© ou « loadbility ») ainsi que la rĂ©duction de la vulnĂ©rabilitĂ© sont aussi des fonctions objectives qui ont Ă©tĂ© considĂ©rĂ©es. L’applicabilitĂ© de l’outil proposĂ© a Ă©tĂ© confirmĂ©e sur des cas d’utilisation basĂ©s sur des rĂ©seaux T&D benchmark de l’IEEE comportant des centaines de variables et contraintes. Dans la partie suivante, l'architecture du framework de co-simulation, ainsi que les diffĂ©rents acteurs clĂ©s qui y participent seront examinĂ©s. Les objectifs de cette partie sont les suivants : dĂ©velopper, simuler et rĂ©soudre des Ă©quations algĂ©briques de chaque niveau indĂ©pendamment, Ă  l'aide de simulateurs bien connus, spĂ©cifiques Ă  un domaine (c’est-Ă -dire, transport vs distribution), tout en assurant une interface externe pour l'Ă©change de donnĂ©es. L'outil d'interface devrait Ă©tablir une connexion de partage de donnĂ©es robuste, fiable et bilatĂ©rale entre deux niveaux de systĂšme. Les idĂ©es et les mĂ©thodologies proposĂ©es seront discutĂ©es. Pour completer cette Ă©tude, La commutation optimale de rĂ©seaux de transport (Optimal Transmission Switching) en tant que nouvelle mĂ©thode de rĂ©duction des coĂ»ts d'exploitation est considĂ©rĂ©e d'un point de vue de la sĂ©curitĂ©, en assument ou non la prĂ©sence des BESS. De toute Ă©vidence, l'OTS est un moyen efficace (tout comme la rĂ©fĂ©rence de tension ou le contrĂŽle des rĂ©fĂ©rences de puissances P-Q) qui s’avĂšre nĂ©cessaire dans le cadre T&D intĂ©grĂ©, tel que nous le dĂ©montrons Ă  travers divers cas d'utilisation. Pour ce faire, afin de prĂ©server la sĂ©curitĂ© des systĂšmes de transport d'Ă©lectricitĂ© contre les attaques ou les catastrophes naturelles telles que les ouragans et les pannes, un problĂšme OTS stochastique orientĂ© vulnĂ©rabilitĂ© (VO-SOTS) est Ă©galement introduit dans cette thĂšse tout en considĂ©rant l'incertitude des charges via une approche par Ă©chantillonage de scĂ©narios respectant la distribution statistique des incertitudes.With the growing trend of emerging new technologies in distribution networks, such as wind turbines, solar panels, electric vehicles, and distributed generations, the need for simultaneously studying Transmission & Distribution (T&D) networks and their bilateral interactions cannot be overlooked anymore. High penetration of naturally stochastic renewable energy sources may reverse the energy flow which does not fit in the top-down energy transfer paradigm of conventional power systems. Consequently, network study methods such as optimal power flow, unit commitment, and static stability analysis need to be revised. This thesis proposes application of battery energy storage systems (BESS) within integrated T&D framework minimizing the adverse impacts of renewable energy resources. The BESSs can be interpreted as additional flexible equipment, remotely and/or locally controlled, which absorb or release both active and reactive powers and improve the overall efficiency of the complete T&D system from both steady-state and dynamic viewpoints. As a common practice, the integrated T&D framework studies are categorized into either dynamic and steady-state subcases or co-optimization framework and co-simulation framework. Following the same approach, the steady-state analysis is first initiated by a novel voltage stability constrained stochastic optimal BESS allocation (VSC-SOBA) tool. The developed bi-level GAMS-based optimization tool takes into account BESSs and detailed models of stochastic distributed energy resources while minimizing active power losses, voltage deviation, load shedding costs, increasing loadability, and vulnerability mitigation are objective functions. The applicability of proposed tool has been confirmed over large IEEE recognized T&D benchmarks with hundreds of variables and constraints. In the next part, the architecture of co-simulation framework and different key players will be investigated. The objectives of this part are set as: developing, simulating, and solving differential and algebraic equations of each level independently, using existing well-known domain-specific simulators, while externally-interfaced for exchanging data. The interface tool should stablish a robust, reliable, and bilateral data sharing connection between two levels of system. The ideas and proposed methodologies will be discussed. To complete this study, optimal transmission switching (OTS) as a new method for reduction of operation costs is next considered from a security point of view. It is shown clearly that OTS is an effective mean (just like voltage reference or P-Q reference control), which is necessary in the integrated T&D framework to make it useful in dealing with various emerging use cases. To do so without impeding the security of power transmission systems against attacks or natural disasters such as hurricane and outages, a vulnerability oriented stochastic OTS (VO-SOTS) problem is also introduced in this thesis, while considering the loads uncertainty via a scenario-based approach

    Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

    Get PDF
    Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained multi objective (MO) optimization problem considering two objectives, i.e., minimization of active power losses and voltage deviations from the corresponding desired values, subject to full AC load flow constraints and operational limits. The control variables utilized in the proposed MO-ORPD problem are generator bus voltages, transformers’ tap ratios and shunt reactive power compensation at the weak buses. The proposed probabilistic MO-ORPD problem is implemented on the IEEE 30-bus and IEEE 118-bus tests systems. The obtained numerical results substantiate the effectiveness and applicability of the proposed probabilistic MO-ORPD problem

    Uncertainty Management in Power System Operation Decision Making

    Full text link
    Due to the penetration of renewable energy resources and load deviation, uncertainty handling is one of the main challenges for power system; therefore the need for accurate decision-making in a power system under the penetration of uncertainties is essential. However, decision makers should use suitable methods for uncertainty management. In this chapter, some of the uncertainty modeling methods in power system studies are analyzed. At first, multiple uncertain parameters that the power system deals with are introduced, then some useful uncertainty modeling methods are introduced. To show the uncertainty modeling process and its effect on the decision-making, a microgrid consisting of multiple uncertain parameters is considered, and stochastic scenario-based approach is used for uncertainty modeling. The scheduling of microgrids in the presence of different types of uncertainty is solved from the profit-maximization point of view. The simulation results are presented for a 33-bus microgrid that shows the effectiveness of the proposed method for decision-making under high level of uncertainty

    Modélisation et simulation de systÚmes électrotechniques pour l'énergie renouvelable, le transport et les applications industrielles: Une brÚve revue

    No full text
    International audienceIn this paper, a completed review of recent researches about modern power converter based electrotechnical systems (ETSs) has been carried out. In particular, power electronics (PEs) based ETSs have been investigated. The literature review consists of a standard classification of PEs-based ETSs, along with a survey on strengths and weaknesses of these devices impact on renewable energy sources.Dans cet article, une revue complÚte des recherches récentes sur les systÚmes électrotechniques basés sur les convertisseurs de puissance modernes (ETS) est réalisée. En particulier, les ETS basés sur l'électronique de puissance (PE) sont étudiés. La revue de la littérature consiste en une classification standard des ETS basés sur les PE, ainsi qu'une étude sur des forces et les faiblesses de ces dispositifs sur les sources d'énergie renouvelables

    Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources

    No full text
    In this paper, a robust scheduling model is proposed for combined heat and power (CHP)-based microgrids using information gap decision theory (IGDT). The microgrid under study consists of conventional power generation as well as boiler units, fuel cells, CHPs, wind turbines, solar PVs, heat storage units, and battery energy storage systems (BESS) as the set of distributed energy resources (DERs). Additionally, a demand response program (DRP) model is considered which has a successful performance in the microgrid hourly scheduling. One of the goals of CHP-based microgrid scheduling is to provide both thermal and electrical energy demands of the consumers. Additionally, the other objective is to benefit from the revenues obtained by selling the surplus electricity to the main grid during the high energy price intervals or purchasing it from the grid when the price of electricity is low at the electric market. Hence, in this paper, a robust scheduling approach is developed with the aim of maximizing the total profit of different energy suppliers in the entire scheduling horizon. The employed IGDT technique aims to handle the impact of uncertainties in the power output of wind and solar PV units on the overall profit
    corecore