16 research outputs found

    SARS-CoV-2 structural features may explain limited neutralizing-antibody responses.

    Get PDF
    Neutralizing antibody responses of SARS-CoV-2-infected patients may be low and of short duration. We propose here that coronaviruses employ a structural strategy to avoid strong and enduring antibody responses. Other viruses induce optimal and long-lived neutralizing antibody responses, thanks to 20 or more repetitive, rigid antigenic epitopes, spaced by 5–10 nm, present on the viral surface. Such arrays of repetitive and highly organized structures are recognized by the immune system as pathogen-associated structural patterns (PASPs), which are characteristic for pathogen surfaces. In contrast, coronaviruses are large particles with long spikes (S protein) embedded in a fluid membrane. Therefore, the neutralizing epitopes (which are on the S protein) are loosely “floating” and widely spaced by an average of about 25 nm. Consequently, recruitment of complement is poor and stimulation of B cells remains suboptimal, offering an explanation for the inefficient and short-lived neutralizing antibody responses

    Vaccination with nanoparticles combined with micro-adjuvants protects against cancer.

    Get PDF
    Induction of strong T cell responses, in particular cytotoxic T cells, is a key for the generation of efficacious therapeutic cancer vaccines which yet, remains a major challenge for the vaccine developing world. Here we demonstrate that it is possible to harness the physiological properties of the lymphatic system to optimize the induction of a protective T cell response. Indeed, the lymphatic system sharply distinguishes between nanoscale and microscale particles. The former reaches the fenestrated lymphatic system via diffusion, while the latter either need to be transported by dendritic cells or form a local depot. Our previously developed cucumber-mosaic virus-derived nanoparticles termed (CuMV <sub>TT</sub> -VLPs) incorporating a universal Tetanus toxoid epitope TT830-843 were assessed for their draining kinetics using stereomicroscopic imaging. A nano-vaccine has been generated by coupling p33 epitope as a model antigen to CuMV <sub>TT</sub> -VLPs using bio-orthogonal Cu-free click chemistry. The CuMV <sub>TT</sub> -p33 nano-sized vaccine has been next formulated with the micron-sized microcrystalline tyrosine (MCT) adjuvant and the formed depot effect was studied using confocal microscopy and trafficking experiments. The immunogenicity of the nanoparticles combined with the micron-sized adjuvant was next assessed in an aggressive transplanted murine melanoma model. The obtained results were compared to other commonly used adjuvants such as B type CpGs and Alum. Our results showed that CuMV <sub>TT</sub> -VLPs can efficiently and rapidly drain into the lymphatic system due to their nano-size of ~ 30 nm. However, formulating the nanoparticles with the micron-sized MCT adjuvant of ~ 5 μM resulted in a local depot for the nanoparticles and a longer exposure time for the immune system. The preclinical nano-vaccine CuMV <sub>TT</sub> -p33 formulated with the micron-sized MCT adjuvant has enhanced the specific T cell response in the stringent B16F10p33 murine melanoma model. Furthermore, the micron-sized MCT adjuvant was as potent as B type CpGs and clearly superior to the commonly used Alum adjuvant when total CD8 <sup>+</sup> , specific p33 T cell response or tumour protection were assessed. The combination of nano- and micro-particles may optimally harness the physiological properties of the lymphatic system. Since the nanoparticles are well defined virus-like particles and the micron-sized adjuvant MCT has been used for decades in allergen-specific desensitization, this approach may readily be translated to the clinic

    Virus-like particles for vaccination against cancer.

    Get PDF
    Active immunotherapy of cancer aims to treat the disease by inducing effective cellular and humoral immune responses. Virus-like particle-based vaccines have evolved dramatically over the last few decades, greatly reducing morbidity and mortality of several infectious diseases and expectedly preventing cervical cancer caused by human papilloma virus. In contrast to these broad successes of disease prevention, therapeutic cancer vaccines remain to demonstrate clinical benefit. Yet, several preclinical and clinical trials have revealed promising results and are paving the way for medical breakthroughs. This study reviews and discusses the recent preclinical development and clinical trials in this field. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Murine CD8 T-cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density.

    Get PDF
    It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T-cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo. Despite its importance, the FA is rarely determined in T-cell vaccination studies. We addressed the question whether different time intervals for short-term homologous vaccinations impact the FA of CD8 T-cell responses. Four-week instead of 2-week intervals between priming and boosting with potent subunit vaccines in C57BL/6 mice did not improve FA. Equally, similar FA was observed after vaccination with virus-like particles displaying low versus high antigen densities. Interestingly, FA was stable in vivo but not in vitro, depending on the antigen dose and the time interval since T-cell activation, as observed in murine monoclonal T cells. Our findings suggest dynamic in vivo modulation for equal FA. We conclude that low antigen density vaccines or a minimal 4-week prime/boost interval are not crucial for the T-cell's FA, in contrast to antibody responses

    In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma.

    No full text
    Intratumoral injections of novel therapeutics can activate tumor antigen-specific T cells for locoregional tumor control and may even induce durable systemic protection (against distant metastases) via recirculating T cells. Here we explored the possibility of a universal immunotherapy that promotes T-cell responses in situ and beyond, upon intratumoral injection of nanoparticles formulated with micron-sized crystals. Cucumber mosaic virus-like particles containing a tetanus toxin peptide (CuMV <sub>TT</sub> ) were formulated with microcrystalline tyrosine (MCT) adjuvant and injected directly in B16F10 melanoma tumors. To further enhance immunogenicity, we loaded the nanoparticles with a TLR7/8 ligand and incorporated a universal tetanus toxin T-helper cell peptide. We assessed therapeutic efficacy and induction of local and systemic immune responses, including RNA sequencing, providing broad insight into the tumor microenvironment and correlates of protection. MCT crystals were successfully decorated with CuMV <sub>TT</sub> nanoparticles. This 'immune-enhancer' formed immunogenic depots in injected tumors, enhanced polyfunctional CD8 <sup>+</sup> and CD4 <sup>+</sup> T cells, and inhibited B16F10 tumor growth locally and systemically. Local inflammation and immune responses were associated with upregulation of genes involved in complement activation and collagen formation. Our new immune-enhancer turned immunologically cold tumors into hot ones and inhibited local and distant tumor growth. This type of immunotherapy does not require the identification of (patient-individual) relevant tumor antigens. It is well tolerated, non-infectious, and affordable, and can readily be upscaled for future clinical testing and broad application in melanoma and likely other solid tumors

    Strong Sensitivity of Red Sea Zooplankton to UV-B Radiation

    No full text
    The impacts of UV-B radiation to Red Sea coastal zooplankton was assessed experimentally at the time (May/June) of peak UV-B radiation, using the most abundant zooplankton species in the community (eight copepod genera, a cladoceran, an ostracod, a cumacean, and two meroplankton, including crab zoeae and megalopa). Mortality rates increased greatly in the presence of ambient UV-B radiation for all species tested except for Labidocera, Macrosetella, and the crab megalopa larvae. Mortality rates declined, on average, threefold when UV-B radiation was removed. These results provide evidence that Red Sea zooplankton are highly vulnerable to ambient levels of UV-B radiation. © 2014, Coastal and Estuarine Research FederationThis work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (grant no. 1-150/1433 HiCi). The authors, therefore, acknowledge with thanks the DSR technical and financial supportPeer Reviewe

    Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases.

    No full text
    Background: Apart from active allergen avoidance, immunotherapy is regarded as the most effective form of treatment available for type I allergies. Such treatments involve the administration of allergen preparations in various forms and by various routes. Virus-like particles (VLPs) offer a very effective platform for immunization with the allergen and are characterized by high immunogenicity, low allergenicity and high clinical efficacy. Formulations that include Toll-like receptor ligands, T cell stimulatory epitopes and/or depot-forming adjuvants appear to enhance activation of the relevant immune cells. Short nucleotide sequences including CpG motifs have also been intensively explored as potent stimulators of dendritic cells and B cells. Methods: The present paper is based on a systematic literature search in PubMed and MEDLINE, and focuses on the pertinent immunological processes and on clinical data relating to use of VLPs and CpG motifs for the treatment of allergic rhinitis (AR). Results: Many published studies have reported positive clinical results following administration of VLPs, either alone or in combination with CpG motifs and, in some cases, even in the absence of the allergen-specific allergen. Conclusions: These results indicate that VLPs modulate immune responses in ways which underline their exceptional promise as a platform for the immunotherapy of allergic disorders. However, clinical evaluations remain limited, and further large-scale and longer-term studies will be necessary to substantiate the efficacy and safety of these novel therapies

    Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma.

    Get PDF
    Harnessing the immune system to purposely recognize and destroy tumors represents a significant breakthrough in clinical oncology. Non-synonymous mutations (neoantigenic peptides) were identified as powerful cancer targets. This knowledge can be exploited for further improvements of active immunotherapies, including cancer vaccines, as T cells specific for neoantigens are not attenuated by immune tolerance mechanism and do not harm healthy tissues. The current study aimed at developing an optimized multitarget vaccine using short or long neoantigenic peptides utilizing virus-like particles (VLPs) as an efficient vaccine platform. Mutations of murine mammary carcinoma cells were identified by integrating mass spectrometry-based immunopeptidomics and whole exome sequencing. Neoantigenic peptides were synthesized and covalently linked to virus-like nanoparticles using a Cu-free click chemistry method for easy preparation of vaccines against mouse mammary carcinoma. As compared with short peptides, vaccination with long peptides was superior in the generation of neoantigen-specific CD4 <sup>+</sup> and CD8 <sup>+</sup> T cells, which readily produced interferon gamma (IFN-γ) and tumor-necrosis factor α (TNF-α). The resulting anti-tumor effect was associated with favorable immune re-polarization in the tumor microenvironment through reduction of myeloid-derived suppressor cells. Vaccination with long neoantigenic peptides also decreased post-surgical tumor recurrence and metastases, and prolonged mouse survival, despite the tumor's low mutational burden. Integrating mass spectrometry-based immunopeptidomics and whole exome sequencing is an efficient approach for identifying neoantigenic peptides. Our multitarget VLP-based vaccine shows a promising anti-tumor effect in an aggressive murine mammary carcinoma model. Future clinical application using this strategy is readily feasible and practical, as click chemistry coupling of personalized synthetic peptides to the nanoparticles can be done at the bedside directly before injection
    corecore