611 research outputs found

    Reduce temptation or resist it? Experienced temptation mediates the relationship between implicit evaluations of unhealthy snack foods and subsequent intake

    Get PDF
    A more negative implicit evaluation of unhealthy food stimuli and a more positive implicit evaluation of a weight-management goal have been shown to predict lower consumption of unhealthy food. However, the associations between these evaluations, temptation to indulge and consumption of unhealthy food remain unclear. The current study investigated whether temptation would mediate the relationship between implicit food and goal evaluations and consumption (resembling an antecedent-focused route to self-control of eating), or whether those evaluations would moderate the relationship between temptation and consumption (resembling a response-focused route). A sample of 156 women (17–25 years), who tried to manage their weight through healthy eating, completed two implicit association tasks assessing implicit food and goal evaluations, respectively. Intake of four energy-dense snack foods was measured in a task disguised as a taste test, and participants reported the strength of experienced temptation to indulge in the snacks offered. Negative implicit food evaluation was associated with lower snack intake, and temptation mediated this relationship. Implicit goal evaluation was unrelated to both temptation strength and snack consumption. The findings contribute to an understanding of how negative implicit unhealthy food evaluation relates to lower consumption, namely through the mediation of temptation to indulge in those foods

    External Quality Assessment of Sputum Smear Microscopy in Tuberculosis Laboratories in Sughd, Tajikistan

    Get PDF
    Introduction: Tajikistan has a laboratory network with three levels of tuberculosis (TB) laboratories. The external quality assessment (EQA) of sputum smear microscopy was implemented in 2007. The objective of this study was to evaluate the EQA system and identify potential performance improvement strategies in TB microscopic laboratories in Sughd, Tajikistan.Methods: This is a cross-sectional study based on retrospective record review and secondary data analyses on Acid-Fast Bacilli (AFB) microscopy data and EQA reading results collected between the first quarter of 2011 and the fourth quarter of 2013. Descriptive analyses were conducted to examine the overview of microscopy laboratories activities, EQA results, and laboratory performance. Result: Of the 123,874 smears examined between 2011 and 2013, 11,522 (9.30%) were re-checked by the EQA system. The population TB screening rate rose from 0.46% in 2011 to 0.57% in 2013, and the case positivity rate decreased from 6.98% to 4.80%. The regional EQA results showed a reduction in high false-positive, high false-negative, and low false-negative errors. False-positive errors had decreased from 0.13% in 2011 to 0.07% in 2013, and false-negative errors from 0.91% in 2011 to 0.15% in 2013. Regional sensitivity of smear microscopy, when compared to re-checking controller, increased from 88.2% in 2011 to 97.2% in 2013. The regional specificity level remained relatively stable at above 99%.Conclusion: Our study found that a decreasing trend of case positivity rate from 2011 to 2013 in Sughd, though the overall laboratory workload was on the rise. In addition, EQA results showed an overall error reduction and an improved sensitivity of smear microscopy in the region. The overview of microscopic laboratory activities and the actual evaluation of the EQA system on sputum smear microscopy complement each other in providing a better picture on the progress of TB laboratory strengthening. We recommend similar approaches to be adapted by future evaluations on TB microscopic laboratories, particularly among countries of high burden. Interactive training and feedback loops are crucial to improving TB surveillance in Tajikistan

    miR-34a is upregulated inAIP-mutated somatotropinomas and promotes octreotide resistance

    Get PDF
    Pituitary adenomas (PAs) are intracranial tumors associated with significant morbidity due to hormonal dysregulation, mass effects and have a heavy treatment burden. Growth hormone (GH)-secreting PAs (somatotropinomas) cause acromegaly-gigantism. Genetic forms of somatotropinomas due to germlineAIPmutations (AIPmut+) have an early onset and are aggressive and resistant to treatment with somatostatin analogs (SSAs), including octreotide. The molecular underpinnings of these clinical features remain unclear. We investigated the role of miRNA dysregulation inAIPmut+ vsAIPmut- PA samples by array analysis. miR-34a and miR-145 were highly expressed inAIPmut+ vsAIPmut- somatotropinomas. Ectopic expression ofAIPmut (p.R271W) inAip(-/-)mouse embryonic fibroblasts (MEFs) upregulated miR-34a and miR-145, establishing a causal link betweenAIPmut and miRNA expression. In PA cells (GH3), miR-34a overexpression promoted proliferation, clonogenicity, migration and suppressed apoptosis, whereas miR-145 moderately affected proliferation and apoptosis. Moreover, high miR-34a expression increased intracellular cAMP, a critical mitogenic factor in PAs. Crucially, high miR-34a expression significantly blunted octreotide-mediated GH inhibition and antiproliferative effects. miR-34a directly targetsGnai2encoding G alpha i2, a G protein subunit inhibiting cAMP production. Accordingly, G alpha i2 levels were significantly lower inAIPmut+ vsAIPmut- PA. Taken together, somatotropinomas withAIPmutations overexpress miR-34a, which in turn downregulates G alpha i2 expression, increases cAMP concentration and ultimately promotes cell growth. Upregulation of miR-34a also impairs the hormonal and antiproliferative response of PA cells to octreotide. Thus, miR-34a is a novel downstream target of mutantAIPthat promotes a cellular phenotype mirroring the aggressive clinical features ofAIPmut+ acromegaly.Peer reviewe

    RD50-MPW3: A fully monolithic digital CMOS sensor for future tracking detectors

    Full text link
    The CERN-RD50 CMOS working group develops the RD50-MPWseries of monolithic high-voltage CMOS pixel sensors for potential use in future high luminosity experiments such as the HL-LHC and FCC-hh. In this contribution, the design of the latest prototype in this series, RD50-MPW3, is presented. An overview of its pixel matrix and digital readout periphery is given, with discussion of the new structures implemented in the chip and the problems they aim to solve. The main analog and digital features of the sensor are already tested and initial laboratory characterisation of the chip is presented

    cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels.

    Get PDF
    BACKGROUND: The nitric oxide-sensitive guanylyl cyclase/cGMP-dependent protein kinase type I signaling pathway can afford protection against the ischemia/reperfusion injury that occurs during myocardial infarction. Reportedly, voltage and Ca2+-activated K+ channels of the BK type are stimulated by cGMP/cGMP-dependent protein kinase type I, and recent ex vivo studies implicated that increased BK activity favors the survival of the myocardium at ischemia/reperfusion. It remains unclear, however, whether the molecular events downstream of cGMP involve BK channels present in cardiomyocytes or in other cardiac cell types. METHODS: Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model. RESULTS: Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice. CONCLUSIONS: Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction
    • …
    corecore