102 research outputs found

    C-SIDE: The control-structure interaction demonstration experiment

    Get PDF
    The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion

    Controls for orbital assembly of large space structures

    Get PDF
    The topics covered are presented in viewgraph form and include the following: flexible structure control; decentralized control for flexible multi-body systems; control of structures during assembly; decentralized control using structural partitioning; reduced-orded model-based controller design; ROM/residual mode filters (RMF) control of large flexible structures;RMF in a distributed parameter system (DPS); LSS active control simulation; 3-D truss beam; mobile transporter with RMS; and flexible robot manipulator

    The Grizzly, December 7, 2000

    Get PDF
    Football Coach Quits Amid Controversy • Field House Opening Postponed Until New Millennium • Ursinus\u27 Class of 2004 Survives Fall Semester • Finals Schedule • Holidays a Time for Giving at Ursinus • Islam Awareness Week Offers Cultural Insight • Students Experience Christmas in the Big Apple • Opinions: Campus Construction an Eyesore; UC Democrats Respond to Allegations; Grizzly a Success This Semester • First Annual Palooza a Poetic Success • Choir Angelic in Annual Coming of \u27Messiah\u27 • Hypnotist Anthony Entrances UC Students • Lady Bears Down, but not out • UC Swim Teams Suffer Defeat in Poolside Duels Against Archrivals • Wrestling Finishes 3rd at Invitational • Swarthmore Cuts Football, Wrestling, Badminton Programs • Pro Wrestlers Rumble on UC Campus • Barrett Breaks Scoring Record, Leads Bears to 3-2https://digitalcommons.ursinus.edu/grizzlynews/1481/thumbnail.jp

    Magna Carta, the Rule of Law and the Limits on Government

    Get PDF
    This paper surveys the legal tradition that links Magna Carta with the modern concepts of the rule of law and the limits on government. It documents that the original understanding of the rule of law included substantive commitments to individual freedom and limited government. Then, it attempts at explaining how and why such commitments were lost to a formalist interpretation of the rule of law from 1848 to 1939. The paper concludes by arguing how a revival of the substantive commitments of the rule of law is central in a project of reshaping modern states

    Assessing changes in genomic divergence following a century of human-mediated secondary contact among wild and captive-bred ducks

    No full text
    Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens
    • …
    corecore