380 research outputs found

    Quanta Burst Photography

    Full text link
    Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.Comment: A version with better-quality images can be found on the project webpage: http://wisionlab.cs.wisc.edu/project/quanta-burst-photography

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Superconductor-Insulator Transition in a Disordered Electronic System

    Full text link
    We study an electronic model of a 2D superconductor with onsite randomness using Quantum Monte Carlo simulations. The superfluid density is used to track the destruction of superconductivity in the ground state with increasing disorder. The non-superconducting state is identified as an insulator from the temperature dependence of its d.c. resistivity. The value of σdc\sigma_{\rm dc} at the superconductor-insulator transition appears to be non-universal.Comment: PostScript, 4 pages, figures include

    Dynabench: Rethinking Benchmarking in NLP

    Get PDF
    We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field

    Babesia duncani multi-omics identifies virulence factors and drug targets

    Get PDF
    Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.We thank R. Gao for her contribution to the initial eforts to sequence the B. duncani genome. C.B.M.’s research was supported by grants from the National Institutes of Health (AI097218, GM110506, AI123321 and R43AI136118), the Steven and Alexandra Cohen Foundation (Lyme 62 2020), and the Global Lyme Alliance. S.L.’s research was supported by grants by the US National Science Foundation (IIS 1814359) and the National Institutes of Health (1R01AI169543-01). K.G.L.R.’s research was supported by the National Institutes of Allergy and Infectious Diseases (R01 AI136511, R01 AI142743-01 and R21 AI142506-01), the University of California, Riverside (NIFA-Hatch-225935) and the Health Institute Carlos III (PI20CIII/00037).S

    Effect of 12 months of testosterone replacement therapy on metabolic syndrome components in hypogonadal men: data from the Testim Registry in the US (TRiUS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that there may be a bidirectional, physiological link between hypogonadism and metabolic syndrome (MetS), and testosterone replacement therapy (TRT) has been shown to improve some symptoms of MetS in small patient populations. We examined the effect of 12 months of TRT on MetS components in a large cohort of hypogonadal men.</p> <p>Methods</p> <p>Data were obtained from TRiUS (Testim<sup>® </sup>Registry in the United States), a 12-month, multicenter, prospective observational registry (N = 849) of hypogonadal men prescribed Testim 1% testosterone gel (5-10 g/day). Data analyzed included age, total testosterone (TT), free testosterone (FT), sex hormone-binding globulin (SHBG), and MetS components: waist circumference, blood pressure, fasting blood glucose, plasma triglycerides, and HDL cholesterol.</p> <p>Results</p> <p>Of evaluable patients (581/849) at baseline, 37% were MetS+ (n = 213) and 63% were MetS- (n = 368). MetS+ patients had significantly lower TT (p < 0.0001) and SHBG (p = 0.01) levels. Patients with the lowest quartile TT levels (<206 ng/dL [<7.1 nmol/L]) had a significantly increased risk of MetS+ classification vs those with highest quartile TT levels (≥331 ng/dL [≥11.5 nmol/L]) (odds ratio 2.66; 95% CI, 1.60 to 4.43). After 12 months of TRT, TT levels significantly increased in all patients (p < 0.005). Despite having similar TT levels after TRT, only MetS+ patients demonstrated significant decreases in waist circumference, fasting blood glucose levels, and blood pressure; lowest TT quartile patients demonstrated significant decreases in waist circumference and fasting blood glucose. Neither HDL cholesterol nor triglyceride levels changed significantly in either patient population.</p> <p>Conclusion</p> <p>Hypogonadal MetS+ patients were more likely than their MetS- counterparts to have lower baseline TT levels and present with more comorbid conditions. MetS+ patients and those in the lowest TT quartile showed improvement in some metabolic syndrome components after 12 months of TRT. While it is currently unclear if further cardiometabolic benefit can be seen with longer TRT use in this population, testing for low testosterone may be warranted in MetS+ men with hypogonadal symptoms.</p

    Left ventricular volume: an optimal parameter to detect systolic dysfunction on prospectively triggered 64-multidetector row computed tomography: another step towards reducing radiation exposure

    Get PDF
    In this study, we define the correlation between LV volumes (both LV end-diastolic volume [LVEDV] and LV end-systolic volume [LVESV]) and ejection fraction (EF) on 64 slice multi-detector computed tomography (MDCT). We also determine the accuracy of all the LV volume (LVV) parameters to detect LV systolic dysfunction (LVSD) and investigate the feasibility of using LVV as a surrogate of LVSD on prospectively gated imaging to prevent the radiation exposure of retrospective imaging. 568 patients undergoing 64-detector MDCT were divided into 2 groups: Group 1—subjects without any heart disease and LVEF ≥ 50%; and Group 2—patients with coronary artery disease and LVEF < 50% (defined as LVSD). The LVV (LV cavity only) and Total LV volume (cavity + LV mass) at end-systole and end-diastole (LVESV, Total LVESV, LVEDV and Total LVEDV) were measured. The upper limit values (mean + 2 SD) of all LVV parameters in Group 1 were used as the reference criterion to diagnose LVSD in Group 2. An exponential correlation was found between LVEF and all the LVV parameters. The specificity to detect LVSD in Group 2 was >90% and the sensitivity was 88.9, 83.3, 61.3 and 74.9% by using LVESV, Total LVESV, LVEDV and Total LVEDV, respectively. Systolic and diastolic LV volumes had a high correlation with LVEF and a high accuracy to detect LVSD. Thus, on prospectively triggered imaging, ventricular volumes can predict patients with reduced LVEF, and appropriate referrals can be made

    Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila

    Get PDF
    The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly
    corecore