30 research outputs found

    The Roles of Primary Cilia in Polycystic Kidney Disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited genetic disorder that results in progressive renal cyst formation with ultimate loss of renal function and other systemic disorders. These systemic disorders include abnormalities in cardiovascular, portal, pancreatic and gastrointestinal systems. ADPKD is considered to be among the ciliopathy diseases due to the association with abnormal primary cilia function. In order to understand the full course of primary cilia and its association with ADPKD, the structure, functions and role of primary cilia have been meticulously investigated. As a result, the focus on primary cilia has emerged to support the vital roles of primary cilia in ADPKD. The primary cilia have been shown to have not only a mechanosensory function but also a chemosensory function. Both structural and functional defects in primary cilia result in cystic kidney disease and vascular hypertension. Thus, the mechanosenory and chemosensory functions will be analyzed in regards to ADPKD

    Chemical-Free Technique to Study the Ultrastructure of Primary Cilium

    Get PDF
    A primary cilium is a hair-like structure with a width of approximately 200 nm. Over the past few decades, the main challenge in the study of the ultrastructure of cilia has been the high sensitivity of cilia to chemical fixation, which is required for many imaging techniques. In this report, we demonstrate a combined high-pressure freezing (HPF) and freeze-fracture transmission electron microscopy (FFTEM) technique to examine the ultrastructure of a cilium. Our objective is to develop an optimal high-resolution imaging approach that preserves cilia structures in their best natural form without alteration of cilia morphology by chemical fixation interference. Our results showed that a cilium has a swelling-like structure (termed bulb), which was previously considered a fixation artifact. The intramembrane particles observed via HPF/FFTEM indicated the presence of integral membrane proteins and soluble matrix proteins along the ciliary bulb, which is part of an integral structure within the ciliary membrane. We propose that HPF/FFTEM is an important and more suitable chemical-free method to study the ultrastructure of primary cilia

    Novel Biomarkers of Ciliary Extracellular Vesicles Interact with Ciliopathy and Alzheimer’s Associated Proteins

    Get PDF
    Ciliary extracellular vesicles (ciEVs), released from primary cilia, contain functional proteins that play an important role in cilia structure and functions. We have recently shown that ciEVs and cytosolic extracellular vesicles (cyEVs) have unique and distinct biomarkers. While ciEV biomarkers have shown some interactions with known ciliary proteins, little is known about the interaction of ciEV proteins with proteins involved in ciliopathy and neurodegenerative disorders. Here, we reveal for the first time the protein-protein interaction (PPI) between the top five ciEVs biomarkers with ciliopathy and Alzheimer disease (AD) proteins. These results support the growing evidence of the critical physiological roles of cilia in neurodegenerative disorders

    Folate Conjugated Nanomedicines for Selective Inhibition of mTOR Signaling in Polycystic Kidneys at Clinically Relevant Doses

    Get PDF
    Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent). The NPs increased the efficacy, potency and tolerability of rapamycin resulting in an increased survival rate and improved kidney function by decreasing side effects and reducing biodistribution to other organs in PKD mice. The daily administration of rapamycin-alone (1 mg/kg/day) could now be achieved with a weekly injection of NPs containing rapamycin (379 ÎŒg/kg/week). This polycystic kidney-targeting nanotechnology, for the first time, integrated advances in the use of 1) nanoparticles as a delivery cargo, 2) folate for targeting, 3) near-infrared Cy5-fluorophore for in vitro and in vivo live imaging, 4) rapamycin as a pharmacological therapy, and 5) TEMPO as a combinational therapy. The slow sustained-release of rapamycin by polycystic kidney-targeting NPs demonstrates a new era of nanomedicine in treatment for chronic kidney diseases at clinically relevant doses

    Author Correction: Sensory Primary Cilium is a Responsive cAMP Microdomain in Renal Epithelia

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-019-43002-2, published online 25 April 2019 The legend for Figure 1c is incomplete. ‘Time-lapse images represent the intracellular calcium level in response to fluid-shear stress (arrow) by epithelial and endothelial cells treated without (control, vehicle) and with tolvaptan (0.1 ÎŒM). Color bar indicates intracellular calcium level from low (black) to high (red). Corresponding brightfield images are shown in Supplementary Fig. S1.’ should read: ‘Time-lapse images represent the intracellular calcium level in response to fluid-shear stress (arrow) by epithelial and endothelial cells that were first treated with vehicle alone (control), and then treated with tolvaptan (0.1 ÎŒM) for 20 hours. Color bar indicates intracellular calcium level from low (black) to high (red). Corresponding brightfield images are shown in Supplementary Fig. S1.

    Sensory Primary Cilium is a Responsive cAMP Microdomain in Renal Epithelia

    Get PDF
    Primary cilia are hair-like cellular extensions that sense microenvironmental signals surrounding cells. The role of adenylyl cyclases in ciliary function has been of interest because the product of adenylyl cyclase activity, cAMP, is relevant to cilia-related diseases. In the present study, we show that vasopressin receptor type-2 (V2R) is localized to cilia in kidney epithelial cells. Pharmacologic inhibition of V2R with tolvaptan increases ciliary length and mechanosensory function. Genetic knockdown of V2R, however, does not have any effect on ciliary length, although the effect of tolvaptan on ciliary length is dampened. Our study reveals that tolvaptan may have a cilia-specific effect independent of V2R or verapamil-sensitive calcium channels. Live-imaging of single cilia shows that V2R activation increases cilioplasmic and cytoplasmic cAMP levels, whereas tolvaptan mediates cAMP changes only in a cilia-specific manner. Furthermore, fluid-shear stress decreases cilioplasmic, but not cytoplasmic cAMP levels. Our data indicate that cilioplasmic and cytoplasmic cAMP levels are differentially modulated. We propose that the cilium is a critical sensor acting as a responsive cAMP microcompartment during physiologically relevant stimuli

    Ciliary Extracellular Vesicles are Distinct from the Cytosolic Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) are cell‐derived membrane vesicles that are released into the extracellular space. EVs encapsulate key proteins and mediate intercellular signalling pathways. Recently, primary cilia have been shown to release EVs under fluid‐shear flow, but many proteins encapsulated in these vesicles have never been identified. Primary cilia are ubiquitous mechanosensory organelles that protrude from the apical surface of almost all human cells. Primary cilia also serve as compartments for signalling pathways, and their defects have been associated with a wide range of human genetic diseases called ciliopathies. To better understand the mechanism of ciliopathies, it is imperative to know the distinctive protein profiles of the differently sourced EVs (cilia vs cytosol). Here, we isolated EVs from ciliated wild‐type (WT) and non‐ciliated IFT88 knockout (KO) mouse endothelial cells using fluid‐shear flow followed by a conventional method of EV isolation. EVs isolated from WT and KO exhibited distinctive sizes. Differences in EV protein contents were studied using liquid chromatography with tandem mass spectrometry (LC‐MS‐MS) and proteomic comparative analysis, which allowed us to classify proteins between ciliary EVs and cytosolic EVs derived from WT and KO, respectively. A total of 79 proteins were exclusively expressed in WT EVs, 145 solely in KO EVs, and 524 in both EVs. Our bioinformatics analyses revealed 29% distinct protein classes and 75% distinct signalling pathways between WT and KO EVs. Based on our statistical analyses and in vitro studies, we identified NADPH‐cytochrome P450 reductase (POR), and CD166 antigen (CD166) as potential biomarkers for ciliary and cytosolic EVs, respectively. Our protein‐protein interaction network analysis revealed that POR, but not CD166, interacted with either established or strong ciliopathy gene candidates. This report shows the unique differences between EVs secreted from cilia and the cytosol. These results will be important in advancing our understanding of human genetic diseases

    The Use of Advanced Spectral Imaging to Reveal Nanoparticle Identity in Biological Samples

    Get PDF
    Nanoparticles (NPs) have been used in drug delivery therapies, medical diagnostic strategies, and as current Covid-19 vaccine carriers. Many microscope-based imaging systems have been introduced to facilitate detection and visualization of NPs. Unfortunately, none can differentiate the core and the shell of NPs. Spectral imaging has been used to distinguish a drug molecule and its metabolite. We have recently integrated this technology to a resolution of 9 nm by using artificial intelligence-driven analyses. Such a resolution allowed us to collect many robust datapoints for each pixel of an image. Our analyses could recognize 45 spectral points within a pixel to detect unlabeled Ag-NPs and Au-NPs in single live cells and tissues (liver, heart, spleen and kidneys). The improved resolution and software provided a more specific fingerprinting for each single molecule, allowing simultaneous analyses of 990 complex interactions from the 45 points for each molecule within a pixel of an image. This in turn allowed us to detect surface-functionalization of Ag-NPs to distinguish the core from the shell of Ag-NPs for the first time. Our studies were validated using various laborious and time-consuming conventional techniques. We propose that spectral imaging has tremendous potential to study NP localization and identification in biological samples at a high temporal and spatial resolution, based primarily on spectral identity information

    Ciliotherapy: A Novel Intervention in Polycystic Kidney Disease

    Get PDF
    Background Ciliopathies are a group of diseases associated with abnormal structure or function of primary cilia. Ciliopathies include polycystic kidney disease (PKD), a pathology associated with vascular hypertension. We previously showed that cilia length regulates cilia function, and cilia function is required for nitric oxide (NO) biosynthesis in endothelial cells. Because patients with PKD show abnormal sensory cilia function, the aim of our current study was to search for a targeted therapy focused on primary cilia, which we refer to as ‘cilio-therapy’. Methods and Results In the present studies, our in vitro analyses refined fenoldopam as an equipotent and more specific dopa- minergic agonist to regulate cilia length and function

    Proteomic Identification Reveals the Role of Ciliary Extracellular‐Like Vesicle in Cardiovascular Function

    Get PDF
    Primary cilia are shown to have membrane swelling, also known as ciliary bulbs. However, the role of these structures and their physiological relevance remains unknown. Here, it is reported that a ciliary bulb has extracellular vesicle (EV)‐like characteristics. The ciliary extracellular‐like vesicle (cELV) has a unique dynamic movement and can be released by mechanical fluid force. To better identify the cELV, differential multidimensional proteomic analyses are performed on the cELV. A database of 172 cELV proteins is generated, and all that examined are confirmed to be in the cELV. Repressing the expression of these proteins in vitro and in vivo inhibits cELV formation. In addition to the randomized heart looping, hydrocephalus, and cystic kidney in fish, compensated heart contractility is observed in both fish and mouse models. Specifically, low circulation of cELV results in hypotension with compensated heart function, left ventricular hypertrophy, cardiac fibrosis, and arrhythmogenic characteristics, which result in a high mortality rate in mice. Furthermore, the overall ejection fraction, stroke volume, and cardiac output are significantly decreased in mice lacking cELV. It is thus proposed that the cELV as a nanocompartment within a primary cilium plays an important role in cardiovascular functions
    corecore