4 research outputs found

    TINC — A Method to Dissect Regulatory Complexes at Single-Locus Resolution — Reveals an Extensive Protein Complex at the Nanog Promoter

    Get PDF
    Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general.Anja S. Knaupp, Monika Mohenska, Michael R. Larcombe, Ethan Ford, Sue Mei Lim, Kayla Wong, Joseph Chen, Jaber Firas, Cheng Huang, Xiaodong Liu, Trung Nguyen, Yu B.Y. Sun, Melissa L. Holmes, Pratibha Tripathi, Jahnvi Pflueger, Fernando J. Rossello, Jan Schro, der, Kathryn C. Davidson, Christian M. Nefzger, Partha P. Das, Jody J. Haigh, Ryan Lister, Ralf B. Schittenhelm, and Jose M. Pol

    Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo

    Get PDF
    Abstract The spatial sorting of RNA transcripts is fundamental for the refinement of gene expression to distinct subcellular regions. Although, in non-mammalian early embryogenesis, differential RNA localisation presages cell fate determination, in mammals it remains unclear. Here, we uncover apical-to-basal RNA asymmetries in outer blastomeres of 16-cell stage mouse preimplantation embryos. Basally directed RNA transport is facilitated in a microtubule- and lysosome-mediated manner. Yet, despite an increased accumulation of RNA transcripts in basal regions, higher translation activity occurs at the more dispersed apical RNA foci, demonstrated by spatial heterogeneities in RNA subtypes, RNA-organelle interactions and translation events. During the transition to the 32-cell stage, the biased inheritance of RNA transcripts, coupled with differential translation capacity, regulates cell fate allocation of trophectoderm and cells destined to form the pluripotent inner cell mass. Our study identifies a paradigm for the spatiotemporal regulation of post-transcriptional gene expression governing mammalian preimplantation embryogenesis and cell fate

    A placental model of SARS-CoV-2 infection reveals ACE2-dependent susceptibility and differentiation impairment in syncytiotrophoblasts

    Get PDF
    Published online: 13 July 2023SARS-CoV-2 infection causes COVID-19. Several clinical reports have linked COVID-19 during pregnancy to negative birth outcomes and placentitis. However, the pathophysiological mechanisms underpinning SARS-CoV-2 infection during placentation and early pregnancy are not clear. Here, to shed light on this, we used induced trophoblast stem cells to generate an in vitro early placenta infection model. We identified that syncytiotrophoblasts could be infected through angiotensin-converting enzyme 2 (ACE2). Using a co-culture model of vertical transmission, we confirmed the ability of the virus to infect syncytiotrophoblasts through a previous endometrial cell infection. We further demonstrated transcriptional changes in infected syncytiotrophoblasts that led to impairment of cellular processes, reduced secretion of HCG hormone and morphological changes vital for syncytiotrophoblast function. Furthermore, different antibody strategies and antiviral drugs restore these impairments. In summary, we have established a scalable and tractable platform to study early placental cell types and highlighted its use in studying strategies to protect the placenta.J. Chen, J. A. Neil, J. P. Tan, R. Rudraraju, M. Mohenska, Y. B. Y. Sun, E. Walters, N. G. Bediaga, G. Sun, Y. Zhou, Y. Li, D. Drew, P. Pymm, W. H. Tham, F. J. Rossello, G. Nie, X. Liu, K. Subbarao and J. M. Pol

    3D-cardiomics: A spatial transcriptional atlas of the mammalian heart.

    No full text
    Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/
    corecore