138 research outputs found

    Theory of electrostatically induced shape transitions in carbon nanotubes

    Full text link
    A mechanically bistable single-walled carbon nanotube can act as a variable-shaped capacitor with a voltage-controlled transition between collapsed and inflated states. This external control parameter provides a means to tune the system so that collapsed and inflated states are degenerate, at which point the tube's susceptibility to diverse external stimuli-- temperature, voltage, trapped atoms -- diverges following a universal curve, yielding an exceptionally sensitive sensor or actuator that is characterized by a vanishing energy scale. For example, the boundary between collapsed and inflated states can shift hundreds of Angstroms in response to the presence or absence of a single gas atom in the core of the tube. Several potential nano-electromechanical devices can be based on this electrically tuned crossover between near-degenerate collapsed and inflated configurations

    Role of histaminegic and calcium channels in the inhibitory effects of hydroalcoholic extract of matricaria recutita L. on isolated rabbit jejunum

    Get PDF
    Introduction: Considering the long traditional history of anti-inflammatory and anti-spasmodic effects of Matricria spices on the gastrointestinal system, the present study aimed to investigate the role of calcium channels and Histamine receptors in the inhibitory effects of hydroalcoholic dry extract of German chamomile (Matricaria recutita L.) on the isolated rabbit jejunum. Methods: All experiments were done on the isolated jejunum of New Zealand rabbits (1.8-2.5 kg). Dry extract of aerial parts of M. recutita was obtained by the maceration technique. The study was performed on two groups (n=6 in each group). In the first group, the effects of cumulative concentrations of M. recutita (3×10-3-1×10-2 mg/ml) on normal and K+-induced contractions (50 mM) of isolated jejunum were studied. In the second group, the inhibitory role of M. recutita (3 – 13×10-3 mg/ml) was evaluated in the presence and absence of histamine and cetrizine. In the presence and absence of 10 μM certizine, a histamine H1-antagonist, a concentration-dependent inhibitory effect of M. recutita extract in the range of 3-13×10-3 mg/ml was recorded the rabbit jejunum. Results: Results showed that EC50 of M. recutita in the absence and presence of K+ was 6.3×10-3 and 6.5×10- 3mg/ml, respectively. IC50 values for two concentrations of M. recutita (8×10-3 , 1×10-2 ) to abrogated contractive phase of Histamine was 9.55 × 10-6 and 1.57 × 10-6 μM. Cetrizine (10 μM) abolished inhibitory effects of M. recutita (IC50=3.6×10-3), (p< 0.001). Conclusion: Dry extract of matricaria recutita had inhibitory effects on the contractions of isolated rabbit jejunum. Calcium channels and histamine were involved in these antispasmodic effects

    Role of nitric oxide on the electrophysiological properties of isolated rabbit atrioventricular node by extracellular field potential during atrial fibrillation

    Get PDF
    Introduction: The aim of the present study was to determine direct effects of NO modulation on protective electrophysiological properties of atrioventricular node (AV node) in the experimental model of AF in rabbit. Methods: Isolated perfused rabbit AV nodal preparations were used in two groups. In the first group (N=7), LNAME (50μM) was applied. In the second group (N=12), different concentrations of L - argenine (250 μM - 5000 μM) were added to the solution. Programmed stimulation protocols were used to quantify AV nodal conduction time, refractoriness and zone of concealment. AF protocol was executed by software with coupling intervals (ranging from 75–125 msec). Results: L-NAME had depressive effects on basic AV nodal properties. L-Arginine (250μM) had direct inhibitory effects on nodal conduction time, Wenckebach and refractoriness. Significant increases in the number of concealed beats were induced by L-Arginine (500 μM). Number of concealed beats were increased from 700.7±33.7 to 763±21 msec (P<0.05). Trend of zone of concealment prolongation in a frequency-dependent model was abrogated by Larginine (250, 5000 μM). Conclusion: NO at low concentration (in the presence of L-NAME) had facilitatory role on AV nodal properties, but at high concentration (in the presence of L-arginine) enhanced protective role of AV node during AF. Biphasic modulatory role of NO may affect protective behavior of AV node during AF. © 2011, Iranian Society of Physiology and Pharmacology. All rights reserved

    Potential use of algae for heavy metal bioremediation, a critical review

    Get PDF
    Algae have several industrial applications that can lower the cost of biofuel co24 production. Among these co-production applications, environmental and wastewater bioremediation are increasingly important. Heavy metal pollution and its implications for public health and the environment have led to increased interest in developing environmental biotechnology approaches. We review the potential for algal biosorption and/or neutralization of the toxic effects of heavy metal ions, primarily focusing on their cellular structure, pretreatment, modification, as well as potential application of genetic engineering in biosorption performance. We evaluate pretreatment, immobilization, and factors affecting biosorption capacity, such as initial metal ion concentration, biomass concentration, initial pH, time, temperature, and interference of multi metal ions and introduce molecular tools to develop engineered algal strains with higher biosorption capacity and selectivity. We conclude that consideration of these parameters can lead to the development of low-cost micro and macroalgae cultivation with high bioremediation potential

    Fabrication and characterization of the modified ev31-based metal matrix nanocomposites

    Get PDF
    Metal matrix nanocomposites (MMNCs) with high specific strength have been of interest for numerous researchers. In the current study, Mg matrix nanocomposites reinforced with AlN nanoparticles were produced using the mechanical stirring-assisted casting method. Microstructure, hardness, physical, thermal and electrical properties of the produced composites were characterized in this work. According to the microstructural evaluations, the ceramic nanoparticles were uniformly dispersed within the matrix by applying a mechanical stirring. At higher AlN contents, however, some agglomerates were observed as a consequence of a particle-pushing mechanism during the solidification. Microhardness results showed a slight improvement in the mechanical strength of the nanocomposites following the addition of AlN nanoparticles. Interestingly, nanocomposite samples were featured with higher electrical and thermal conductivities, which can be attributed to the structural effect of nanoparticles within the matrix. Moreover, thermal expansion analysis of the nanocomposites indicated that the presence of nanoparticles lowered the Coefficient of Thermal Expansion (CTE) in the case of nanocomposites. All in all, this combination of properties, including high mechanical strength, thermal and electrical conductivity, together with low CTE, make these new nanocomposites very promising materials for electro packaging applications

    Microalgae and Phototrophic Purple Bacteria for Nutrient Recovery From Agri-Industrial Effluents: Influences on Plant Growth, Rhizosphere Bacteria, and Putative Carbon- and Nitrogen-Cycling Genes

    Get PDF
    Microalgae (MA) and purple phototrophic bacteria (PPB) have the ability to remove and recover nutrients from digestate (anaerobic digestion effluent) and pre-settled pig manure that can be Utilized as bio-fertilizer and organic fertilizer. The objective of this study was to compare the effectiveness of MA and PPB as organic fertilizers and soil conditioners in relation to plant growth and the soil biological processes involved in nitrogen (N) and carbon (C) cycling. To this end, a glasshouse experiment was conducted using MA and PPB as bio-fertilizers to grow a common pasture ryegrass (Lolium rigidum Gaudin) with two destructive harvests (45 and 60 days after emergence). To evaluate the rhizosphere bacterial community, we used barcoded PCR-amplified bacterial 16S rRNA genes for paired-end sequencing on the Illumina Mi-Seq. Additionally, we used phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis for the detection of putative functional genes associated with N and soil-C cycling. There was a significant increase in plant growth when the soil was amended with PPB, which almost performed as well as the chemical fertilizers. Analysis of the rhizosphere bacteria after the second harvest revealed a greater abundance of Firmicutes than in the first harvest. Members of this phylum have been identified as a biostimulant for plant growth. In contrast, the MA released nutrients more slowly and had a profound effect on N cycling by modulating N mineralization and N retention pathways. Thus, MA could be developed as a slow-release fertilizer with better N retention, which could improve crop performance and soil function, despite nutrient losses from leaching, runoff, and atmospheric emissions. These data indicate that biologically recovered nutrients from waste resources can be effective as a fertilizer, resulting in enhanced C- and N-cycling capacities in the rhizosphere

    Marine health of the Arabian Gulf: Drivers of pollution and assessment approaches focusing on desalination activities

    Get PDF
    The Arabian Gulf is one of the most adversely affected marine environments worldwide, which results from combined pollution drivers including climate change, oil and gas activities, and coastal anthropogenic disturbances. Desalination activities are one of the major marine pollution drivers regionally and internationally. Arabian Gulf countries represent a hotspot of desalination activities as they are responsible for nearly 50% of the global desalination capacity. Building desalination plants, up-taking seawater, and discharging untreated brine back into the sea adversely affects the biodiversity of the marine ecosystems. The present review attempted to reveal the potential negative effects of desalination plants on the Gulf's marine environments. We emphasised different conventional and innovative assessment tools used to assess the health of marine environments and evaluate the damage exerted by desalination activity in the Gulf. Finally, we suggested effective management approaches to tackle the issue including the significance of national regulations and regional cooperation

    Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses – Analytical techniques

    Get PDF
    This paper presents new analytical modelling of shunt circuit control responses for tuning electromechanical piezoelectric vibration power harvesting structures with proof mass offset. For this combination, the dynamic closed-form boundary value equations reduced from strong form variational principles were developed using the extended Hamiltonian principle to formulate the new coupled orthonormalised electromechanical power harvesting equations showing combinations of the mechanical system (dynamical behaviour of piezoelectric structure), electromechanical system (electrical piezoelectric response) and electrical system (tuning and harvesting circuits). The reduced equations can be further formulated to give the complete forms of new electromechanical multi-mode FRFs and time waveform of the standard AC-DC circuit interface. The proposed technique can demonstrate self-adaptive harvesting response capabilities for tuning the frequency band and the power amplitude of the harvesting devices. The self-adaptive tuning strategies are demonstrated by modelling the shunt circuit behaviour of the piezoelectric control layer in order to optimise the harvesting piezoelectric layer during operation under input base excitation. In such situations, with proper tuning parameters the system performance can be substantially improved. Moreover, the validation of the closed-form technique is also provided by developing the Ritz method-based weak form analytical approach giving similar results. Finally, the parametric analytical studies have been explored to identify direct and relevant contributions for vibration power harvesting behaviours
    corecore