52 research outputs found

    Comparison of the neuroprotective effects of aspirin, atorvastatin, captopril and metformin in diabetes mellitus

    Get PDF
    Objective: The aim of this study was to investigate the effect of combined intake of a high dose of aspirin, atorvastatin, captopril and metformin on oxidative stress in the brain cortex and hippocampus of streptozotocin (STZ)-induced diabetic rats. Material and methods: Rats were randomly divided into the following 11 groups: control and diabetic (D), as well as 9 groups that were treated with metformin (M, 300 mg/kg) or aspirin (ASA, 120 mg/kg) alone or in different combinations with captopril (C, 50 mg/kg) and/or atorvastatin (AT, 40 mg/kg) as follows: (D + M), (D + ASA), (D + M + ASA), (D + M + C), (D + M + AT), (D + M + C + ASA), (D + M + C + AT), (D + M + AT + ASA) and (D + M + C + AT + ASA). The rats in treatment groups received drugs by gavage daily for six weeks. Serum lipid profile and levels of oxidative markers in the brain cortex and hippocampus tissues were evaluated. Results: The levels of malondialdehyde in the brain cortex and hippocampus in all the treated groups decreased significantly (p < 0.05). There was a significant increase in the total thiol concentration as well as catalase activity in treated rats in (M + AT), (M + C + ASA), (M + C + AT), (M + AT + ASA) and (M + C + AT + ASA) groups in cortex and hippocampus in comparison with the diabetic rats (p < 0.05). Also, the superoxide dismutase activity in all treated rats with medications was significantly increased compared to the diabetic rats (p < 0.05–0.01). Conclusion: Our findings showed that the combined use of high-dose aspirin, metformin, captopril and atorvastatin potentiated their antioxidant effects on the brain, and hence could potentially improve cognitive function with their neuroprotective effects on hippocampus

    Effect of the cholinergic system of the lateral periaqueductal gray (lPAG) on blood pressure and heart rate in normal and hydralazine hypotensive rats

    Get PDF
    Objective(s): Due to the presence of the cholinergic system in the lateral periaqueductal gray (lPAG) column, the cardiovascular effects of Acetylcholine (ACH) and its receptors in normotensive and hydralazine (HYD) hypotensive rats in this area were evaluated.Materials and Methods: After anesthesia, the femoral artery was cannulated and systolic blood pressure (SBP), mean arterial pressure (MAP), heart rate (HR), and also electrocardiogram for evaluation of low frequency (LF) and high frequency (HF) bands, important components of heart rate variability (HRV), were recorded. ACH, atropine (Atr, a muscarinic antagonist), and hexamethonium (Hex, an antagonist nicotinic) alone and together microinjected into lPAG, changes (Δ) of cardiovascular responses and normalized (n) LF, HF, and LF/HF ratio were analyzed.Results: In normotensive rats, ACH decreased SBP and MAP, and enhanced HR while Atr and Hex did had no effects. In co-injection of Atr and Hex with ACH, only ACH+Atr significantly attenuated parameters. In HYD hypotension, ACH had no affect but Atr and Hex significantly improved the hypotensive effect. Co-injection of Atr and Hex with ACH decreased the hypotensive effect but the effect of Atr+ACH was higher. In normotensive rats, ACH decreased nLF, nHF, and nLF/nHF ratio. These parameters in the Atr +ACH group were significantly higher than in ACH group. In HYD hypotension nLF and nLF/nHF ratio increased which was attenuated by ACH. Also, Atr+ACH decreased nLF and nLF/nHF ratio and increased nHF.Conclusion: The cholinergic system of lPAG mainly via muscarinic receptors has an inhibitory effect on the cardiovascular system. Based on HRV assessment, peripheral cardiovascular effects are mostly mediated by the parasympathetic system

    Electrochemistry and Reactivity of Chelation‐stabilized Hypervalent Bromine(III) Compounds

    Get PDF
    Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard‐to‐control and difficult‐to‐synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation‐stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro‐oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in‐depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659European Regional Development Fund http://dx.doi.org/10.13039/501100008530HORIZON EUROPE European Research Council http://dx.doi.org/10.13039/100019180Estonian Research Competency Council http://dx.doi.org/10.13039/501100005189Peer Reviewe

    Anti-inflammatory, immunomodulatory and anti-oxidant effects of Ocimum basilicum L. and its main constituents: A review

    Get PDF
    Ocimum basilicum L. (O. basilicum) is an ornamental and therapeutic plant with various pharmacological effects and medical applications. In this article, detailed information on the anti-oxidant, immunomodulatory, and anti-inïŹ‚ammatory properties of O. basilicum and its main constituents was provided. The literature survey of the different databases until the end of November 2021 was explored on the immunomodulatory, anti-inïŹ‚ammatory and anti-oxidant effects of the herb and its constituents. The plant and its constituents showed diverse pharmacological effects including immunomodulatory, anti-inflammatory and anti-oxidant properties by improving of the inflammatory mediators including interleukin (IL)-10, IL-4, tumor necrosis factor-alpha (TNF-α), interferon gamma (IFN-Îł), nitric oxide (NO), serum levels of IFN-Îł, IL10 and IL-4, IgG, IgM and phospholipase A2 (PLA2), immunoglobulin E (IgE), total protein (TP), oxidant and anti-oxidant markers. O. basilicum and its main constituents therefore, could be effective on the treatment of diseases associated with inflammation, immune dysregulation and oxidative stress. The present review article provides readers with organized information about the anti-oxidant, immunomodulatory, and anti-inïŹ‚ammatory properties of O. basilicum

    Effects of Zataria multiflora Extract and Carvacrol on Doxorubicin-Induced Oxidative Stress in Rat Brain

    Get PDF
    Background: Due to the antioxidant effects of Zataria multiflora (ZM) and Carvacrol (CAR) in various problems and the prominent role of the ROS in neurotoxicity induced by Doxorubicin (DOX), this study was designed to investigate the effects of ZM hydroalcoholic extract and CAR on DOX-induced oxidative stress in rat brain. Methods: 24 male rats were randomly divided into four groups including: 1)Control ,2)Doxorubicin (DOX) that received DOX via a tail vein on the first day of the study, 3,4) ZM+DOX and CAR+DOX which received ZM and CAR by gavage for 28 consecutive days. Brain tissue removed for redox markers evaluation. Results: MDA level in the DOX group was significantly increased compared to control group while in treated groups did not show any significant changes in comparison with the DOX group. Also, Thiol content in DOX group showed significant reduction compared to control group. Thiol contents in treated groups showed no significant difference compared to DOX group. Catalase (CAT) activity, an antioxidant enzyme, in the DOX group were significantly decreased compared to control group and increased in treated rats in comparison with the DOX group. Activity of Superoxide dismutase (SOD), an antioxidant enzyme, in the DOX group was significantly reduced compared to control group and increased in treated rats in comparison with the DOX group. Conclusion: The present study showed that ZM hydroalcoholic extract and CAR could inhibit DOX induced oxidative stress of the brain mainly with effect on the enzymatic antioxidant defense system

    Protective effects of long-term administration of Ziziphus jujuba fruit extract on cardiovascular responses in L-NAME hypertensive rats

    Get PDF
    Objective: Ziziphus jujuba stimulates the release of nitric oxide (NO).  Because NO is involved in cardiovascular regulations, in this study the effects of hydroalcoholic extract of Z. jujuba on cardiovascular responses in acute NG-nitro-L-arginine methyl ester (L-NAME) hypertensive rats were evaluated. Materials and Methods: Rats were divided into 6 group (n=6): 1) saline, 2) L-NAME received (10mg/kg) intravenously, 3) sodium nitroprusside (SNP) (50”g/kg)+L-NAME group received SNP before L-NAME and 4-6) three groups of Z. jujuba (100, 200 and 400mg/kg) that treated for four weeks and on the 28th day, L-NAME was injected. Femoral artery and vein were cannulated for recording cardiovascular responses and drug injection, respectively. Systolic blood pressure (SBP), Mean arterial pressure (MAP) and heart rate (HR) were recorded continuously. Maximal changes (∆) of SBP, MAP and HR were calculated and compared to control and L-NAME groups. Results: In L-NAME group, maximal ΔSBP (L-NAME: 44.15±4.0 mmHg vs control: 0.71±2.1 mmHg) and ΔMAP (L-NAME: 40.8±4.0 mmHg vs control: 0.57±1.6 mmHg) significantly increased (p0.05). All doses of Z. jujuba attenuated maximal ∆SBP and ∆MAP induced by L-NAME but only the lowest dose (100 mg/kg) had significant effects (ΔSBP: 20.36±5.6 mmHg vs L-NAME: 44.1±4.0 mmHg and ΔMAP: 20.8±4.5 mmHg vs L-NAME: 40.8±3.8 mmHg (p0.05). Conclusion: Because long-term consumption of Z. jujuba extract, especially its lowest dose, attenuated cardiovascular responses induced by L-NAME, we suggest that Z. jujuba has potential beneficial effects in prevention of hypertension induced by NO deficiency
    • 

    corecore