22 research outputs found

    Preliminary phytochemical screening, in vitro antidiabetic, antioxidant activities, and toxicity of leaf extracts of Psychotria malayana Jack

    Get PDF
    Psychotria malayana Jack belongs to the Rubiacea and is widespread in Southeast Asian coun- tries. It is traditionally used to treat diabetes. Despite its potential medicinal use, scientific proof of this pharmacological action and the toxic effect of this plant are still lacking. Hence, this study aimed to investigate the in vitro antidiabetic and antioxidant activities, toxicity, and preliminary phytochem- ical screening of P. malayana leaf extracts by gas chromatography-mass spectrometry (GC-MS) after derivatization. The antidiabetic activities of different extracts of this plant were investigated through alpha-glucosidase inhibitory (AGI) and 2-NBDG glucose uptake using 3T3-L1 cell line assays, while the antioxidant activity was evaluated using DPPH and FRAP assays. Its toxicological effect was investi- gated using the zebrafish embryo/larvae (Danio rerio) model. The mortality, hatchability, tail-detachment, yolk size, eye size, beat per minute (BPM), and body length were taken into account to observe the ter- atogenicity in all zebrafish embryos exposed to methanol extract. The LC50 was determined using probit analysis. The methanol extract showed the AGI activity (IC50 = 2.71 ± 0.11 μg/mL), insulin-sensitizing activity (at a concentration of 5 μg/mL), and potent antioxidant activities (IC50 = 10.85 μg/mL and 72.53 mg AAE/g for DPPH and FRAP activity, respectively). Similarly, the water extract exhibited AGI activity (IC50 = 6.75 μg/mL), insulin-sensitizing activity at the concentration of 10 μg/mL, and antioxidant activities (IC50 = 27.12 and 33.71 μg/mL for DPPH and FRAP activity, respectively). The methanol and water extracts exhibited the LC50 value higher than their therapeutic concentration, i.e., 37.50 and 252.45 μg/mL, respectively. These results indicate that both water and methanol ex- tracts are safe and potentially an antidiabetic agent, but the former is preferable since its therapeutic index (LC50/therapeutic concentration) is much higher than for methanol extracts. Analysis using GC-MS on derivatized methanol and water extracts of P. malayana leaves detected partial information on some constituents including palmitic acid, 1,3,5-benzenetriol, 1-monopalmitin, beta-tocopherol, 24-epicampesterol, alpha-tocopherol, and stigmast-5-ene, that could be a potential target to further investigate the antidiabetic properties of the plant. Nevertheless, isolation and identification of the bioactive compounds are required to confirm their antidiabetic activity and toxicity

    Erratum to: Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions

    Get PDF
    Erratum to: Plant Cell Tiss Organ Cult (2014) 117:225–239 DOI 10.1007/s11240-014-0435-2Plant science

    Correlation of the GC-MS-based metabolite profile of Momordica charantia fruit and its antioxidant activity

    Get PDF
    Momordica charantia or bitter melon (Cucurbitaceae) is a widely consumed edible fruit with strong antioxidant properties. Due to these properties, it has been commercialised by the natural product industries as a coadjutant in the treatment of various ailments attributable to the deleterious effects of oxidants. The present work aimed to evaluate the antioxidant activity of M. charantia fruit extracts made with different compositions of ethanol:water, and to identify the metabolites that are responsible for this activity. To this end, the fruit samples were extracted using six different concentrations of ethanol in water (0, 20, 40, 60, 80, and 100%). Gas chromatography-mass spectrometry (GC-MS) and multivariate data analysis (MVDA) were used to identify significant antioxidants. The 80% ethanol:water extract showed the most significant (p < 0.05) antioxidant activity when tested with the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) antioxidant assays. The multivariate data analysis revealed that the metabolites related to this antioxidant activity were gentiobiose, glucose, galactonic acid, palmitic acid, galactose, mannose, and fructos

    Pharmacokinetic–Pharmacometabolomic Approach in Early-Phase Clinical Trials: A Way Forward for Targeted Therapy in Type 2 Diabetes

    No full text
    Pharmacometabolomics in early phase clinical trials demonstrate the metabolic profiles of a subject responding to a drug treatment in a controlled environment, whereas pharmacokinetics measure the drug plasma concentration in human circulation. Application of the personalized peak plasma concentration from pharmacokinetics in pharmacometabolomic studies provides insights into drugs’ pharmacological effects through dysregulation of metabolic pathways or pharmacodynamic biomarkers. This proof-of-concept study integrates personalized pharmacokinetic and pharmacometabolomic approaches to determine the predictive pharmacodynamic response of human metabolic pathways for type 2 diabetes. In this study, we use metformin as a model drug. Metformin is a first-line glucose-lowering agent; however, the variation of metabolites that potentially affect the efficacy and safety profile remains inconclusive. Seventeen healthy subjects were given a single dose of 1000 mg of metformin under fasting conditions. Fifteen sampling time-points were collected and analyzed using the validated bioanalytical LCMS method for metformin quantification in plasma. The individualized peak-concentration plasma samples determined from the pharmacokinetic parameters calculated using Matlab Simbiology were further analyzed with pre-dose plasma samples using an untargeted metabolomic approach. Pharmacometabolomic data processing and statistical analysis were performed using MetaboAnalyst with a functional meta-analysis peaks-to-pathway approach to identify dysregulated human metabolic pathways. The validated metformin calibration ranged from 80.4 to 2010 ng/mL for accuracy, precision, stability and others. The median and IQR for Cmax was 1248 (849–1391) ng/mL; AUC0-infinity was 9510 (7314–10,411) ng·h/mL, and Tmax was 2.5 (2.5–3.0) h. The individualized Cmax pharmacokinetics guided the untargeted pharmacometabolomics of metformin, suggesting a series of provisional predictive human metabolic pathways, which include arginine and proline metabolism, branched-chain amino acid (BCAA) metabolism, glutathione metabolism and others that are associated with metformin’s pharmacological effects of increasing insulin sensitivity and lipid metabolism. Integration of pharmacokinetic and pharmacometabolomic approaches in early-phase clinical trials may pave a pathway for developing targeted therapy. This could further reduce variability in a controlled trial environment and aid in identifying surrogates for drug response pathways, increasing the prediction of responders for dose selection in phase II clinical trials

    Berberine Inhibits Telomerase Activity and Induces Cell Cycle Arrest and Telomere Erosion in Colorectal Cancer Cell Line, HCT 116

    No full text
    Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 &plusmn; 0.89 &micro;g/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 &plusmn; 3.12 &micro;g/mL) and silymarin (&gt;200 &micro;g/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells

    Pharmacokinetics and Metabolomic Profiling of Metformin and Andrographis paniculata: A Protocol for a Crossover Randomised Controlled Trial

    No full text
    This protocol aims to profile the pharmacokinetics of metformin and Andrographis paniculata (AP) and continue with untargeted pharmacometabolomics analysis on pre-dose and post-dose samples to characterise the metabolomics profiling associated with the human metabolic pathways. This is a single-centre, open-labelled, three periods, crossover, randomised-controlled, single-dose oral administration pharmacokinetics and metabolomics trial of metformin 1000 mg (n = 18), AP 1000 mg (n = 18), or AP 2000 mg (n = 18) in healthy volunteers under the fasting condition. Subjects will be screened according to a list of inclusion and exclusion criteria. Investigational products will be administered according to the scheduled timeline. Vital signs and adverse events will be monitor periodically, and standardized meals will be provided to the subjects. Fifteen blood samples will be collected over 24 h, and four urine samples will be collected within a 12 h period. Onsite safety monitoring throughout the study and seven-day phone call safety follow-up will be compiled after the last dose of administration. The plasma samples will be analysed for the pharmacokinetics parameters to estimate the drug maximum plasma concentration. Untargeted metabolomic analysis between pre-dose and maximum plasma concentration (Cmax) samples will be performed for metabolomic profiling to identify the dysregulation of human metabolic pathways that link to the pharmacodynamics effects. The metformin arm will focus on the individualised Cmax plasma concentration for metabolomics study and used as a model drug. After this, an investigation of the dose-dependent effects will be performed between pre-dose samples and median Cmax concentration samples in the AP 1000 mg and AP 2000 mg arms for metabolomics study. The study protocol utilises a crossover study design to incorporate a metabolomics-based study into pharmacokinetics trial in the drug development program. The combination analyses will complement the interpretation of pharmacological effects according to the bioavailability of the drug

    Comparative Metabolomics Analysis of Weedy Rice (<i>Oryza</i> spp.) across Peninsular Malaysia

    No full text
    Weedy rice (Oryza spp.) is a notorious weed that invades paddy fields and hampers the rice’s production and yield quality; thus, it has become a major problem for rice farmers worldwide. Weedy rice comprises a diverse morphology and phenotypic variation; however, the metabolome and chemical phenotypes of weedy rice grains have not been explored. Therefore, this study is aimed to investigate the metabolite profiles and chemical diversity of Malaysian weedy rice. Thirty-one biotypes of weedy rice grains were collected from selected rice granaries in different states of Peninsular Malaysia, including Selangor, Perak, Penang, Kedah, Perlis, Kelantan, and Terengganu. In addition to the weedy rice samples, four cultivated rice varieties (MR219, MR220, MR220 CL2, and MARDI Siraj 297) were subjected to nuclear magnetic resonance-based metabolomics. The PLS-DA and OPLS-DA models revealed a clear separation between the weedy rice and cultivated rice, which was contributed by the higher level of γ-aminobutyric acid (GABA), α-glucose, fumaric acid, and phenylalanine in the weedy rice, whilst valine, leucine, isoleucine, fatty acids, 2,3-butanediol, threonine, alanine, butyric acid, choline, γ-oryzanol, fructose, β-glucose, sucrose, ferulic acid, and formic acid were found dominant in the cultivated rice. Interestingly, the models also showed a separation between the weedy rice samples collected from the west coast and east coast regions of Peninsular Malaysia. The metabolites responsible for the separation, i.e., threonine, alanine, butyric acid, fructose, β-glucose, and formic acid, were found higher in the west coast samples, and the east coast samples were discriminated by higher levels of valine, leucine, isoleucine, fatty acids, 2,3-butanediol, choline, GABA, γ-oryzanol, α-glucose, sucrose, fumaric acid, ferulic acid, and phenylalanine. This study is the first to provide insights into the metabolite profiles and chemical phenotypes of Malaysian weedy rice that could be influenced by genotype and environmental conditions. The information on the weedy rice metabolome and omics data is important for further research on weed management and crop improvement
    corecore