6 research outputs found

    Aligned magnetic field of two-phase mixed convection flow in dusty Casson fluid over a stretching sheet with Newtonian heating

    Get PDF
    The effect of aligned magnetic field is numerically investigated for mixed convection flow of dusty Casson fluid over a stretching sheet. The governing equations of flow and heat transfer for the two-phase model (fluid and dust) with an appropriate thermal boundary condition which is Newtonian heating (NH) is presented. The similarity transformation is employed to transform the nonlinear governing equations for each phase into the ordinary differential equations which then solved numerically using Runge-Kutta Fehlberg (RKF45) method. Numerical solutions obtained for velocity and temperature distributions are illustrated through graph by varying several physical parameters. It is observed that the fluid velocity decreases with an increase in aligned magnetic field and particle-fluid interaction parameter

    Aligned Magnetic Field on Dusty Casson Fluid over a Stretching Sheet with Newtonian Heating

    Get PDF
    Boundary layer flow and heat transfer on Casson fluid with dust particle over a stretching sheet is numerically investigated. The influences of aligned magnetic field together with Newtonian heating are considered in this problem. The governing equations are first transformed into ordinary differential equations using the appropriate similarity transformation variables. The numerical computation using Runge-Kutta Fehlberg (RKF45) method is employed to generate the results. Several physical parameters for both phases (fluid and particle) such as aligned angle, magnetic field parameter, Casson parameter, fluid particle interaction parameter, Prandtl number and conjugate parameter are investigated and analysed. The results in term of distribution velocity and temperature are presented graphically. The finding revealed that a rise in aligned angle and magnetic field parameter led to decrease the velocity profile and increase the temperature profile for both phase

    Aligned magnetic field on dusty casson fluid over a stretching sheet with newtonian heating

    No full text
    Boundary layer flow and heat transfer on Casson fluid with dust particle over a stretching sheet is numerically investigated. The influences of aligned magnetic field together with Newtonian heating are considered in this problem. The governing equations are first transformed into ordinary differential equations using the appropriate similarity transformation variables. The numerical computation using Runge-Kutta Fehlberg (RKF45) method is employed to generate the results. Several physical parameters for both phases (fluid and particle) such as aligned angle, magnetic field parameter, Casson parameter, fluid particle interaction parameter, Prandtl number and conjugate parameter are investigated and analysed. The results in term of distribution velocity and temperature are presented graphically. The finding revealed that a rise in aligned angle and magnetic field parameter led to decrease the velocity profile and increase the temperature profile for both phases

    Convective transport of fluid–solid interaction: a study between non-newtonian casson model with dust particles

    Get PDF
    The Casson model is a fascinating model, which is genuinely recommended for use with fluids of a non-Newtonian type. The conventional model is not capable to represent the Casson model with the suspension of foreign bodies (dust particles). Due to this, the two-phase model for the mixture of Casson model fluid and dust particles is formulated. This study examines the emerging role of dust particles in changing the behavior of Casson model. In particular, two-phase flow of dusty Casson model with modified magnetic field and buoyancy effect under Newtonian heating boundary condition along a vertically stretching sheet is considered. The equations that govern under Casson model, together with dust particles, are reduced to a system of nonlinear ordinary differential equations by employing the suitable similarity variables. These transformed equations are then solved numerically by implementing the Runge–Kutta–Fehlberg (RKF45) method. The numerical results of skin friction coefficient plus Nusselt number are displayed graphically. The results revealed the fluid’s velocity tends to deteriorate due to the existence of dust particles, whilst its temperature is increased. The two-phase flow is one of the mathematical modeling techniques for multiphase flow, where the relationship between the fluid and solid is examined more closely. It is expected that the present findings can contribute to the understanding of the theory of two-phase flow mathematically, which will continue to produce significant research in this field

    Convective transport of fluid–solid interaction: A study between non-newtonian casson model with dust particles

    Get PDF
    The Casson model is a fascinating model, which is genuinely recommended for use with fluids of a non-Newtonian type. The conventional model is not capable to represent the Casson model with the suspension of foreign bodies (dust particles). Due to this, the two-phase model for the mixture of Casson model fluid and dust particles is formulated. This study examines the emerging role of dust particles in changing the behavior of Casson model. In particular, two-phase flow of dusty Casson model with modified magnetic field and buoyancy effect under Newtonian heating boundary condition along a vertically stretching sheet is considered. The equations that govern under Casson model, together with dust particles, are reduced to a system of nonlinear ordinary differential equations by employing the suitable similarity variables. These transformed equations are then solved numerically by implementing the Runge–Kutta–Fehlberg (RKF45) method. The numerical results of skin friction coefficient plus Nusselt number are displayed graphically. The results revealed the fluid’s velocity tends to deteriorate due to the existence of dust particles, whilst its temperature is increased. The two-phase flow is one of the mathematical modeling techniques for multiphase flow, where the relationship between the fluid and solid is examined more closely. It is expected that the present findings can contribute to the understanding of the theory of two-phase flow mathematically, which will continue to produce significant research in this field

    TURATH: Islamic Architectural Heritage 2021

    No full text
    The publication is the combined product of an academic exercise in research and measuring the three historic masjids of the Gombak river, i.e. Masjid Sg Chin Chin, Masjid Lama Batu 6 and Masjid Lama Setapak by the graduating students of the IIUM Bachelor of Science in Architectural Studies programme. The research aims to record the history of the three masjids of their origin, their architectural build form, and materiality, as well as the culture of the community that sustains them. The qualitative research method was employed. Literature review, measured drawings, observation, interview, and comparison work were explored within the stipulated time. The significance of this research exercise includes the written and visual records of the three masjids that provide the students with learning experience and appreciation of heritage as their legacy for the future.
    corecore