14 research outputs found

    The effect of Stichopus chloronotus aqueous extract on human osteoarthritis articular chondrocytes in three-dimensional collagen type I hydrogel in vitro

    Get PDF
    Autologous chondrocyte-seeded scaffolds have proved to be one of the most promising alternative therapies for articular cartilage defects. However, the chondrocytes have specific nutritional requirements and risk of dedifferentiation during in vitro expansion. Stichopus chloronotus aqueous extract (SCAE) was investigated as a medium supplement for three-dimensional (3D) collagen type I hydrogel scaffold seeded with chondrocytes to determine whether SCAE is capable of maintaining phenotype and sustaining extracellular matrix synthesis and deposition. Human osteoarthritis articular chondrocytes were isolated from the knee joint cartilage of patients underwent total knee replacement surgery. Human osteoarthritis articular chondrocytes were encapsulated in collagen type I hydrogel and cultured in basic medium with 0, 0.1 and 0.2% of SCAE. The chondrocytes in 3D culture were evaluated by means cell morphology and proliferation, quantitative phenotypic expression of collagen type I, II, aggrecan core protein and sox-9. H&E, toluidine blue staining and sulfated glycosaminoglycan (sGAG) production were analyzed after 7 days in culture. Chondrocytes cultured in 3D with various SCAE concentration appeared with polygonal morphology maintaining their chondrocytes characteristic. SCAE supplementation promoted chondrocytes proliferation and the ability of the cells to express gene encoding collagen type I decreased, whereas their ability to express collagen type II, aggrecan core protein and sox9 increased as compared to control. The cartilaginous matrices were positively stained toluidine blue concomitant with higher sGAG accumulation in SCAE-supplemented culture medium. This study shown that SCAE may be beneficial for in vitro development of 3D chondrocytes culture for use in cartilage tissue engineering therapies

    Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model

    Get PDF
    The objective of this study was to regenerate the tracheal epithelium using autologous nasal respiratory epithelial cells in a sheep model. Respiratory epithelium and fibroblast cells were harvested from nasal turbinates and cultured for 1 week. After confluence, respiratory epithelium and fibroblast cells were suspended in autologous fibrin polymerized separately to form a tissue-engineered respiratory epithelial construct (TEREC). A 3 × 2 cm2 tracheal mucosal defect was created, and implanted with TEREC and titanium mesh as a temporary scaffold. The control groups were divided into 2 groups: polymerized autologous fibrin devoid of cells (group 1), and no construct implanted (group 2). All sheep were euthanized at 4 weeks of implantation. Gross observation of the trachea showed minimal luminal stenosis formation in the experimental group compared to the control groups. Macroscopic evaluation revealed significant mucosal fibrosis in control group 1 (71.8%) as compared to the experimental group (7%). Hematoxylin and eosin staining revealed the presence of minimal overgrowth of fibrous connective tissue covered by respiratory epithelium. A positive red fluorescence staining of PKH26 on engineered tissue 4 weeks after implantation confirmed the presence of cultured nasal respiratory epithelial cells intercalated with native tracheal epithelial cells. Scanning electron microscopy showed the presence of short microvilli representing immature cilia on the surface of the epithelium. Our study showed that TEREC was a good replacement for a tracheal mucosal defect and was able to promote natural regenesis of the tracheal epithelium with minimal fibrosis. This study highlighted a new technique in the treatment of tracheal stenosis

    Tribunal for consumer claims: a critical study of the consumer redressal mechanism / Mohd. Yunus Mohd Suhaimi and Mohammed Heikal Ismail

    No full text
    The last two semesters had been dedicated to conduct a critical research on the mechanism of The Malaysian Tribunal for Consumer Claims. This is relevant as it is one of the mediums to protect the rights of consumers and to ensure justice when dealing between them and the traders. The research was done with the objective to find out the effectiveness and efficiency of its mechanism. The research concentrated in detail on the procedural aspects of the mechanism and several other issues relating to the jurisdiction of the Tribunal, such as the status of 'software' as goods under the Consumer Protection Act 1999. We have conducted interview sessions with the Chairman of the Tribunal in assisting us to understand the mechanism of the Tribunal. The interview benefited us a lot as the clarification and most of his suggestions were relevant for this research. Besides, we have distributed questionnaires to the public at large to analyze whether they were aware of the existence of the Tribunal and the issue of consumerism. The outcome of the questionnaires was as we had expected. Some of the members of the public are still unaware of its existence. Our research also was based on various literature such as books, newspaper articles and materials collected through the internet

    Wound Healing with Electrical Stimulation Technologies: A Review

    No full text
    Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials

    Genipin-crosslinked gelatin scaffold in tissue engineering: a systematic review

    Get PDF
    Gelatin has been frequently used in tissue engineering scaffold due to its favorable biological properties in wound healing enhancement. Genipin, a natural compound derived from Gardenia plants, was shown to be effective in improving physicochemical characteristics of the gelatin scaffold. This systematic review reported the utility of genipin as a crosslinker in gelatin scaffold fabrication. Two electronic databases, namely Scopus and MEDLINE via Ebcoshost were searched for publication between January 1999 and December 2018, using the keywords ‘gelatin’ and ‘genipin’. Articles published in English, reporting the utility of genipin in the fabrication of gelatin sponge were included. The keywords search yielded 830 articles, in which 14 articles were selected and examined in this review. The result of the search provided input in terms of the optimum concentration, crosslinking temperature, and fabrication method of genipin to be used. From the literature, it was found that 0.5% is the optimum genipin concentration and 25˚C is the optimum crosslinking temperature. The result also revealed a gap in the knowledge regarding genipin crosslinker and justifies the need to create awareness of the utility of genipin as a gelatin scaffold crosslinker. The current review provides an extensive overview on the current knowledge on genipin crosslinking and be a guide to an optimal fabrication of the genipin-crosslinked gelatin scaffold

    The effectiveness of Tocotrienol rich fraction and αlpha Tocoferol with combination of vitamin C in the management of systemic inflammatory response syndrome (SIRS)

    Get PDF
    The pathophysiology of systemic inflammatory response syndrome (SIRS) had been described to involve various strong oxidative reactions affecting the status and progress of the patients. Antioxidant therapy had been suggested in many studies involving SIRS management. The objective of this study was to compare the role of vitamin E Tocotrienol and vitamin E Tocopherol combined with vitamin C as antioxidant therapy in the management of critically ill patients diagnosed with SIRS, admitted to the intensive care unit and high dependency wards of Universiti Kebangsaan Malaysia Medical Centre (UKMMC). It was a single blind randomized clinical trial with a total of 72 patients in which 44.4% Malays, 34.7% Chinese, 19.4% Indians and 1.4% others with 59.7% males and 40.3% females were recruited. Patients in TRI E group received Tocotrienol with Vitamin C while TOCO group received Tocopherol with Vitamin C and a control group did not receive any antioxidant. The clinical parameters (heart rate, respiratory rate, systolic blood pressure) showed improvements with significant difference at the end of study (post-intervention) as compared to admission (pre-intervention).Whereas, the sepsis (temperature, PCT, CRP and WBC) and oxidative stress (8-OHdG/Creatinine) parameters showed improvements with significant difference at the end of study (post-intervention) as compared to admission (pre-intervention). The TRI E group showed obvious improvement in clinical, sepsis and oxidative stress parameters, as compared to TOCO and control groups. This study showed that Vitamin E Tocotrienol and Vitamin E Tocopherol in combination with Vitamin C demonstrated significant improvement in the clinical and laboratory parameters during the management of SIRS. Therefore, Vitamin E in combination with Vitamin C had therapeutic benefits in the treatment of critically ill patients with SIRS

    Natural Compounds Affecting Inflammatory Pathways of Osteoarthritis

    No full text
    Osteoarthritis (OA) is the most common type of arthritis and chronic joint disease, affecting more than 240 million people worldwide. Although there are numerous advances in using drugs in treating OA, the use of natural compounds has aroused much interest among researchers due to their safety margin. Recent discovery shows that natural compounds play an extensive role in the oxidative stress signaling pathway in treating OA. Thus, this review summarizes the commonly used natural compounds for treating OA focusing on the oxidative stress signaling pathway and its downstream mediators. Selected databases—such as Scopus, Web of Science, Nature, and PubMed—were used to search for potentially relevant articles. The search is limited to the last 15 years and the search was completed using the Boolean operator’s guideline using the keywords of natural product AND oxidative stress AND osteoarthritis OR natural extract AND ROS AND degenerative arthritis OR natural plant AND free radicals AND degenerative joint disease. In total, 37 articles were selected for further review. Different downstream mechanisms of oxidative stress involved in the usage of natural compounds for OA treatment and anabolic and catabolic effects of natural compounds that exhibit chondroprotective effects have been discussed with the evidence of in vitro and in vivo trials in this review

    Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy

    No full text
    Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a

    Remodeling Osteoarthritic Articular Cartilage under Hypoxic Conditions

    No full text
    Osteoarthritis (OA) is one of the leading joint diseases induced by abnormalities or inflammation in the synovial membrane and articular cartilage, causing severe pain and disability. Along with the cartilage malfunction, imbalanced oxygen uptake occurs, changing chondrocytes into type I collagen- and type X collagen-producing dedifferentiated cells, contributing to OA progression. However, mounting evidence suggests treating OA by inducing a hypoxic environment in the articular cartilage, targeting the inhibition of several OA-related pathways to bring chondrocytes into a normal state. This review discusses the implications of OA-diseased articular cartilage on chondrocyte phenotypes and turnover and debates the hypoxic mechanism of action. Furthermore, this review highlights the new understanding of OA, provided by tissue engineering and a regenerative medicine experimental design, modeling the disease into diverse 2D and 3D structures and investigating hypoxia and hypoxia-inducing biomolecules and potential cell therapies. This review also reports the mechanism of hypoxic regulation and highlights the importance of activating and stabilizing the hypoxia-inducible factor and related molecules to protect chondrocytes from mitochondrial dysfunction and apoptosis occurring under the influence of OA

    Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction

    No full text
    The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction
    corecore