9 research outputs found

    Neonatal Zika virus infection causes transient perineuronal net degradation

    Get PDF
    Perineuronal nets (PNNs) form a specialized extracellular matrix that predominantly surrounds parvalbumin (PV)-expressing GABAergic inhibitory interneurons and help regulate neuronal activity. Their formation early in the postnatal period is regulated by neuronal signaling and glial activation raising concerns that part of the long-term effects ascribed to perinatal viral infections could be mediated by altered PNN formation. Previously, we developed a model of neonatal Zika virus (ZIKV) infection where mice have lifelong neurological sequelae that includes motor disfunction and reduced anxiety coupled with a persistent low-grade expression in proinflammatory markers despite resolving the acute infection. Here, we demonstrate that ZIKV infection to P1 neonatal mice results in a reduction of PNN formation during the acute disease with significant reduction in Wisteria floribunda agglutinin (WFA) staining at the peak of infection [15 days post infection (dpi)] that persisted after the symptoms resolved (30 dpi). At 60 dpi, when there is residual inflammation in the CNS, the number of WFA+ cells and the level of WFA staining as well as levels of aggrecan and brevican in the brains of convalescent mice were not different from those in uninfected controls, however, there was increased frequency of PNNs with an immature phenotype. Over time the impact of the perinatal infection became less evident and there were no clear differences in PNN morphology between the groups at 1 year post infection. Of note, the reduction in PNNs during acute ZIKV infection was not associated with decreased mRNA levels of aggrecan or brevican, but increased levels of degraded aggrecan and brevican indicating increased PNN degradation. These changes were associated with increased expression of matrix metalloproteinase 12 (MMP12) and MMP19, but not MMP9, a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) or ADAMTS5. Together our findings indicate that infection at the time of PNN development interferes with PNN formation, but the nets can reform once the infection and inflammation subside

    BSL2-compliant lethal mouse model of SARS-CoV-2 and variants of concern to evaluate therapeutics targeting the Spike protein

    Get PDF
    Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatibl

    BSL2-compliant lethal mouse model of SARS-CoV-2 and variants of concern to evaluate therapeutics targeting the Spike protein

    Get PDF
    Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatible in vivo system that specifically recapitulates spike protein mediated disease we used replication competent, GFP tagged, recombinant Vesicular Stomatitis Virus where the VSV glycoprotein was replaced by the SARS-CoV-2 spike protein (rVSV-SARS2-S). We show that infection requires hACE2 and challenge of neonatal but not adult, K18-hACE2 transgenic mice (hACE2tg) leads to productive infection of the lungs and brains. Although disease progression was faster in SARS-CoV-2 infected mice, infection with both viruses resulted in neuronal infection and encephalitis with increased expression of Interferon-stimulated Irf7, Bst2, Ifi294, as well as CxCL10, CCL5, CLC2, and LILRB4, and both models were uniformly lethal. Further, prophylactic treatment targeting the Spike protein (Receptor Binding Domain) with antibodies resulted in similar levels of protection from lethal infection against rVSV-SARS2-S and SARS-CoV-2 viruses. Strikingly, challenge of neonatal hACE2tg mice with SARS-CoV-2 Variants of Concern (SARS-CoV-2-α, -β, ϒ, or Δ) or the corresponding rVSV-SARS2-S viruses (rVSV-SARS2-Spike-α, rVSV-SARS2-Spike-β, rVSV-SARS2-Spike-ϒ or rVSV-SARS2-Spike-Δ) resulted in increased lethality, suggesting that the Spike protein plays a key role in determining the virulence of each variant. Thus, we propose that rVSV-SARS2-S virus can be used to understand the effect of changes to SARS-CoV-2 spike protein on infection and to evaluate existing or experimental therapeutics targeting spike protein of current or future VOC of SARS-CoV-2 under BSL-2 conditions

    Immunoglobulin A (IgA) Is a Natural Ligand of Hepatitis A Virus Cellular Receptor 1 (HAVCR1), and the Association of IgA with HAVCR1 Enhances Virus-Receptor Interactions

    No full text
    The hepatitis A virus cellular receptor 1 (HAVCR1/TIM1), a member of the T-cell immunoglobulin mucin (TIM) family, is an important atopy susceptibility gene in humans. The exact natural function of HAVCR1/TIM1 and the inverse association between HAV infection and prevention of atopy are not well understood. To identify natural ligands of human HAVCR1/TIM1, we used an expression cloning strategy based on the binding of dog cells transfected with a human lymph node cDNA library to a HAVCR1/TIM1 Fc fusion protein. The transfected cells that bound to the human HAVCR1/TIM1 Fc contained cDNA of human immunoglobulin alpha 1 heavy (Igα1) and lambda light (Igλ) chain and secreted human IgA1λ antibody that bound to the cell surface. Cotransfection of the isolated Igα1 and Igλ cDNAs to naïve dog cells resulted in the secretion of IgA1λ that bound to HAVCR1/TIM1 Fc but not to a poliovirus receptor Fc fusion protein in a capture enzyme-linked immunosorbent assay. The interaction of HAVCR1/TIM1 with IgA was inhibited by monoclonal antibodies (MAbs) against Igα1 and Igλ, excess IgA1λ, or anti-HAVCR1/TIM1 MAb. IgA did not inhibit HAV infection of African green monkey cells, suggesting that the IgA and the virus binding sites are in different epitopes on HAVCR1/TIM1. IgA enhanced significantly the neutralization of HAV by HAVCR1/TIM1 Fc. Our results indicate that IgA1λ is a specific ligand of HAVCR1/TIM1 and that their association has a synergistic effect in virus-receptor interactions

    Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice

    No full text
    Summary: Zaire Ebola virus (ZEBOV) survivors experience visual and CNS sequelae that suggests the ZEBOV glycoprotein can mediate neurotropism. Replication-competent rVSVΔG-ZEBOV-GP vaccine candidate is generally well tolerated; however, its potential neurotropism requires careful study. Here, we show that a single inoculation of rVSVΔG-ZEBOV-GP virus in neonatal C57BL/6 mice results in transient viremia, neurological symptoms, high viral titers in eyes and brains, and death. rVSVΔG-ZEBOV-GP infects the inner layers of the retina, causing severe retinitis. In the cerebellum, rVSVΔG-ZEBOV-GP infects neurons in the granular and Purkinje layers, resulting in progressive foci of apoptosis and neurodegeneration. The susceptibility to infection is not due to impaired type I IFN responses, although MDA5−/−, IFNβ−/−, and IFNAR1−/− mice have accelerated mortality. However, boosting interferon levels by co-administering poly(I:C) reduces viral titers in CNS and improves survival. Although these data should not be directly extrapolated to humans, they challenge the hypothesis that VSV-based vaccines are non-neurotropic. : Survivors of Ebola infections can experience neurologic and ocular symptoms, raising some concern that replication-competent vaccines expressing Ebola components could infect neurons in susceptible subjects. McWilliams et al. show that the rVSVΔG-EBOV-GP pseudovirus infects neurons in the eyes and brains of neonatal mice, causing tissue damage and lethality. Keywords: Ebola virus, ebolavirus, filovirus, Ebola glycoprotein, VSV, pseudotyped virus, VSV vaccine, innate immunity, neurotropism, neurovirulence, Ebola vaccin

    Long-term persistence of infectious Zika virus: Inflammation and behavioral sequela in mice.

    No full text
    The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age

    A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans

    No full text
    During infection with the hepatitis A virus (HAV), most patients develop mild or asymptomatic disease. However, a small number of patients develop serious, life-threatening hepatitis. We investigated this variability in disease severity by examining 30 Argentinean patients with HAV-induced acute liver failure in a case-control, cross-sectional, observational study. We found that HAV-induced severe liver disease was associated with a 6-amino-acid insertion in TIM1/HAVCR1 (157insMTTTVP), the gene encoding the HAV receptor. This polymorphism was previously shown to be associated with protection against asthma and allergic diseases and with HIV progression. In binding assays, the TIM-1 protein containing the 157insMTTTVP insertion polymorphism bound HAV more efficiently. When expressed by human natural killer T (NKT) cells, this long form resulted in greater NKT cell cytolytic activity against HAV-infected liver cells, compared with the shorter TIM-1 protein without the polymorphism. To our knowledge, the 157insMTTTVP polymorphism in TIM1 is the first genetic susceptibility factor shown to predispose to HAV-induced acute liver failure. Furthermore, these results suggest that HAV infection has driven the natural selection of shorter forms of the TIM-1 protein, which binds HAV less efficiently, thereby protecting against severe HAV-induced disease, but which may predispose toward inflammation associated with asthma and allergy
    corecore