20 research outputs found

    Deep learning identifies cardiac coupling between mother and fetus during gestation

    Get PDF
    In the last two decades, stillbirth has caused around 2 million fetal deaths worldwide. Although current ultrasound tools are reliably used for the assessment of fetal growth during pregnancy, it still raises safety issues on the fetus, requires skilled providers, and has economic concerns in less developed countries. Here, we propose deep coherence, a novel artificial intelligence (AI) approach that relies on 1 min non-invasive electrocardiography (ECG) to explain the association between maternal and fetal heartbeats during pregnancy. We validated the performance of this approach using a trained deep learning tool on a total of 941 one minute maternal-fetal R-peaks segments collected from 172 pregnant women (20–40 weeks). The high accuracy achieved by the tool (90%) in identifying coupling scenarios demonstrated the potential of using AI as a monitoring tool for frequent evaluation of fetal development. The interpretability of deep learning was significant in explaining synchronization mechanisms between the maternal and fetal heartbeats. This study could potentially pave the way toward the integration of automated deep learning tools in clinical practice to provide timely and continuous fetal monitoring while reducing triage, side-effects, and costs associated with current clinical devices

    Monitoring Bone Density Using Microwave Tomography of Human Legs: A Numerical Feasibility Study

    No full text
    A major cause of bone mass loss worldwide is osteoporosis. X-ray is considered to be the gold-standard technique to diagnose this disease. However, there is currently a need for an alternative modality due to the ionizing radiations used in X-rays. In this vein, we conducted a numerical study herein to investigate the feasibility of using microwave tomography (MWT) to detect bone density variations that are correlated to variations in the complex relative permittivity within the reconstructed images. This study was performed using an in-house finite-element method contrast source inversion algorithm (FEM-CSI). Three anatomically-realistic human leg models based on magnetic resonance imaging reconstructions were created. Each model represents a leg with a distinct fat layer thickness; thus, the three models are for legs with thin, medium, and thick fat layers. In addition to using conventional matching media in the numerical study, the use of commercially available and cheap ultrasound gel was evaluated prior to bone image analysis. The inversion algorithm successfully localized bones in the thin and medium fat scenarios. In addition, bone volume variations were found to be inversely proportional to their relative permittivity in the reconstructed images with the root mean square error as low as 2.54. The observations found in this study suggest MWT as a promising bone imaging modality owing to its safe and non-ionizing radiations used in imaging objects with high quality

    Fluoroscopic 3D Image Generation from Patient-Specific PCA Motion Models Derived from 4D-CBCT Patient Datasets: A Feasibility Study

    No full text
    A method for generating fluoroscopic (time-varying) volumetric images using patient-specific motion models derived from four-dimensional cone-beam CT (4D-CBCT) images was developed. 4D-CBCT images acquired immediately prior to treatment have the potential to accurately represent patient anatomy and respiration during treatment. Fluoroscopic 3D image estimation is performed in two steps: (1) deriving motion models and (2) optimization. To derive motion models, every phase in a 4D-CBCT set is registered to a reference phase chosen from the same set using deformable image registration (DIR). Principal components analysis (PCA) is used to reduce the dimensionality of the displacement vector fields (DVFs) resulting from DIR into a few vectors representing organ motion found in the DVFs. The PCA motion models are optimized iteratively by comparing a cone-beam CT (CBCT) projection to a simulated projection computed from both the motion model and a reference 4D-CBCT phase, resulting in a sequence of fluoroscopic 3D images. Patient datasets were used to evaluate the method by estimating the tumor location in the generated images compared to manually defined ground truth positions. Experimental results showed that the average tumor mean absolute error (MAE) along the superior–inferior (SI) direction and the 95th percentile in two patient datasets were 2.29 and 5.79 mm for patient 1, and 1.89 and 4.82 mm for patient 2. This study demonstrated the feasibility of deriving 4D-CBCT-based PCA motion models that have the potential to account for the 3D non-rigid patient motion and localize tumors and other patient anatomical structures on the day of treatment

    Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach

    No full text
    Analysis of heart failure is important in clinical practice to ensure coronary artery disease (CAD) patients will be provided with appropriate timely treatment. The current gold-standard, echocardiography, although reliable, provides a once-off left ventricular ejection fraction (LVEF) measurement and does not provide information about heart function disturbances during day/night cardiac cycles. Additionally, the discrimination between heart failure with preserved and mid-range ejection fraction remains challenging in echocardiography tests. In this vein, this study was sought to investigate the ability of heart rate variability (HRV) in categorizing CAD patients into multiple LVEF groups throughout the 24-hour circadian cycle and checking its agreement with established gold-standard echocardiography-based guidelines. A total of 92 CAD patients who have suffered from heart failure were included in this study. The newly introduced index, HRV ejection fraction (HRVEF), was based on optimizing indices extracted from HRV data, which are correlated with the sympathetic and parasympathetic nervous systems, to form group membership of the preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) LVEF categories. HRVEF groups optimized on hourly basis through Jenks natural breaks algorithm exhibited a consistent pattern with a goodness of variance fit (GVF) of more than 70% accuracy during the late-night to early-morning (01:00-08:00) and evening (17:00-23:00) time periods. At these hours, several HRV indices were found significant (p-value ≤0.05) in differentiating between HRVEF groups using statistical analysis of variance (ANOVA) test. These features include the successive differences between normal heartbeats (RMSSD), low and high frequency (LF, HF) power, standard deviation of normal heartbeats (SD2), short-term scaling exponent (alpha1), and percentage of normal heartbeats in alternation segments (PAS). The findings of this study suggest HRV as a promising supplementary tool to the once-off echocardiography for timely LVEF measurements and heart failure prognosis. It paves the way towards multi-time HRV-based estimations for LVEF according to the association between LVEF and HRV indices to better demonstrate the circadian cardiac function at different LVEF levels in CAD patients

    DataSheet1_Similarities between maternal and fetal RR interval tachograms and their association with fetal development.docx

    No full text
    An association between maternal and fetal heart rate (HR) has been reported but, so far, little is known about its physiological implication and importance relative to fetal development. Associations between both HRs were investigated previously by performing beat-by-beat coupling analysis and correlation analysis between average maternal and fetal HRs. However, studies reporting on the presence of similarities between maternal and fetal HRs or RR intervals (RRIs) over the short term (e.g., 5-min) at different gestational ages (GAs) are scarce. Here, we demonstrate the presence of similarities in the variations exhibited by maternal and fetal RRl tachograms (RRITs). To quantify the same similarities, a cross-correlation (CC) analysis between resampled maternal and fetal RRITs was conducted; RRITs were obtained from non-invasive electrocardiogram (ECG). The degree of similarity between maternal and fetal RRITs (bmfRRITs) was quantified by calculating four CC coefficients. CC analysis was performed for a total of 330 segments (two 5-min segments from 158 subjects and one 5-min from 14 subjects). To investigate the association of the similarity bmfRRITs with fetal development, the linear correlation between the calculated CC coefficients and GA was calculated. The results from the latter analysis showed that similarities bmfRRITs are common occurrences, they can be negative or positive, and they increase with GA suggesting the presence of a regulation that is associated with proper fetal development. To get an insight into the physiological mechanisms involved in the similarity bmfRRITs, the association of the same similarity with maternal and fetal HR variability (HRV) was investigated by comparing the means of two groups in which one of them had higher CC values compared to the other. The two groups were created by using the data from the 158 subjects where fetal RRI (fRRI) calculation from two 5-min ECG segments was feasible. The results of the comparison showed that the maternal very low frequency (VLF) HRV parameter is potentially associated with the similarity bmfRRITs implying that maternal hormones could be linked to the regulations involved in the similarity bmfRRITs. Our findings in this study reinforce the role of the maternal intrauterine environment on fetal development.</p

    Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles

    No full text
    Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are used to classify HF.Objectives: We sought to investigate the effectiveness of using deep learning as an automated tool to predict LVEF from patient clinical profiles using regression and classification trained models. We further investigate the effect of utilizing other LVEF-based thresholds to examine the discrimination ability of deep learning between HF categories grouped with narrower ranges.Methods: Data from 303 CAD patients were obtained from American and Greek patient databases and categorized based on the American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into HFpEF (EF &gt; 55%), HFmEF (50% &lt;= EF &lt;= 55%), and HFrEF (EF &lt; 50%). Clinical profiles included 13 demographical and clinical markers grouped as cardiovascular risk factors, medication, and history. The most significant and important markers were determined using linear regression fitting and Chi-squared test combined with a novel dimensionality reduction algorithm based on arc radial visualization (ArcViz). Two deep learning-based models were then developed and trained using convolutional neural networks (CNN) to estimate LVEF levels from the clinical information and for classification into one of three LVEF-based HF categories.Results: A total of seven clinical markers were found important for discriminating between the three HF categories. Using statistical analysis, diabetes, diuretics medication, and prior myocardial infarction were found statistically significant (p &lt; 0.001). Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous ventricular tachycardia were found important after projections on the ArcViz convex hull with an average nearest centroid (NC) accuracy of 94%. The regression model estimated LVEF levels successfully with an overall accuracy of 90%, average root mean square error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement was then obtained with the classification model, which predicted HF categories with an accuracy &gt;= 93%, sensitivity &gt;= 89%, 1-specificity &lt;5%, and average area under the receiver operating characteristics curve (AUROC) of 0.98.Conclusions: Our study suggests the potential of implementing deep learning-based models clinically to ensure faster, yet accurate, automatic prediction of HF based on the ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as input to the models. Invasive, expensive, and time-consuming clinical testing could thus be avoided, enabling reduced stress in patients and simpler triage for further intervention

    Regression models and hyperparameters tuning.

    No full text
    Heart Failure (HF) significantly impacts approximately 26 million people worldwide, causing disruptions in the normal functioning of their hearts. The estimation of left ventricular ejection fraction (LVEF) plays a crucial role in the diagnosis, risk stratification, treatment selection, and monitoring of heart failure. However, achieving a definitive assessment is challenging, necessitating the use of echocardiography. Electrocardiogram (ECG) is a relatively simple, quick to obtain, provides continuous monitoring of patient’s cardiac rhythm, and cost-effective procedure compared to echocardiography. In this study, we compare several regression models (support vector machine (SVM), extreme gradient boosting (XGBOOST), gaussian process regression (GPR) and decision tree) for the estimation of LVEF for three groups of HF patients at hourly intervals using 24-hour ECG recordings. Data from 303 HF patients with preserved, mid-range, or reduced LVEF were obtained from a multicentre cohort (American and Greek). ECG extracted features were used to train the different regression models in one-hour intervals. To enhance the best possible LVEF level estimations, hyperparameters tuning in nested loop approach was implemented (the outer loop divides the data into training and testing sets, while the inner loop further divides the training set into smaller sets for cross-validation). LVEF levels were best estimated using rational quadratic GPR and fine decision tree regression models with an average root mean square error (RMSE) of 3.83% and 3.42%, and correlation coefficients of 0.92 (p</div
    corecore