5 research outputs found

    Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste

    No full text
    Qatar is one of the biggest oil and gas producers in the world, coupled with it is challenging environmental conditions (high average temperature: >40 °C, low annual rainfall: 46.71 mm, and high annual evaporation rate: 2200 mm) harbors diverse microbial communities that are novel and robust, with the potential to biodegrade hydrocarbons. In this study, we collected hydrocarbon contaminated sludge, wastewater and soil samples from oil and gas industries in Qatar. Twenty-six bacterial strains were isolated in the laboratory from these samples using high saline conditions and crude oil as the sole carbon source. A total of 15 different bacterial genera were identified in our study that have not been widely reported in the literature or studied for their usage in the biodegradation of hydrocarbons. Interestingly, some of the bacteria that were identified belonged to the same genus however, demonstrated variable growth rates and biosurfactant production. This indicates the possibility of niche specialization and specific evolution to acquire competitive traits for better survival. The most potent strain EXS14, identified as Marinobacter sp., showed the highest growth rate in the oil-containing medium as well as the highest biosurfactant production. When this strain was further tested for biodegradation of hydrocarbons, the results showed that it was able to degrade 90 to 100% of low and medium molecular weight hydrocarbons and 60 to 80% of high molecular weight (C35 to C50) hydrocarbons. This study offers many promising leads for future studies of microbial species and their application for the treatment of hydrocarbon contaminated wastewater and soil in the region and in other areas with similar environmental conditions

    A first genetic map of date palm (<em>Phoenix dactylifera</em>) reveals long-range genome structure conservation in the palms.

    No full text
    Background: The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified.Results: Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome.Conclusions: Based on a modified gentoyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms

    A genome-wide survey of date palm cultivars supports two major subpopulations in <em>Phoenix dactylifera</em>.

    No full text
    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm-growing regions, including four Phoenix species as outgroup. Here, for the first time we generate genome-wide genotyping data for 13,000 - 65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm

    Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits.

    Get PDF
    DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation

    Connecting genetic risk to disease end points through the human blood plasma proteome.

    Get PDF
    Genome-wide association studies (GWAS) with intermediate phenotypes, like changes in metabolite and protein levels, provide functional evidence to map disease associations and translate them into clinical applications. However, although hundreds of genetic variants have been associated with complex disorders, the underlying molecular pathways often remain elusive. Associations with intermediate traits are key in establishing functional links between GWAS-identified risk-variants and disease end points. Here we describe a GWAS using a highly multiplexed aptamer-based affinity proteomics platform. We quantify 539 associations between protein levels and gene variants (pQTLs) in a German cohort and replicate over half of them in an Arab and Asian cohort. Fifty-five of the replicated pQTLs are located in trans. Our associations overlap with 57 genetic risk loci for 42 unique disease end points. We integrate this information into a genome-proteome network and provide an interactive web-tool for interrogations. Our results provide a basis for novel approaches to pharmaceutical and diagnostic applications
    corecore